将十进制数转换为二进制数,涉及到整数部分和小数部分的分别处理。下面是详细的步骤:
1. 整数部分转换为二进制
步骤:
- 不断将整数部分除以2: 记录每次除法得到的余数,直到商为0为止。
- 将余数逆序排列: 最后得到的数字就是整数部分的二进制表示。
例子: 将十进制整数 45
转换为二进制。
45 ÷ 2 = 22 余 1 22 ÷ 2 = 11 余 0 11 ÷ 2 = 5 余 1 5 ÷ 2 = 2 余 1 2 ÷ 2 = 1 余 0 1 ÷ 2 = 0 余 1 45 \div 2 = 22 \text{ 余 } 1 \\ 22 \div 2 = 11 \text{ 余 } 0 \\ 11 \div 2 = 5 \text{ 余 } 1 \\ 5 \div 2 = 2 \text{ 余 } 1 \\ 2 \div 2 = 1 \text{ 余 } 0 \\ 1 \div 2 = 0 \text{ 余 } 1 \\ 45÷2=22 余 122÷2=11 余 011÷2=5 余 15÷2=2 余 12÷2=1 余 01÷2=0 余 1
将余数逆序排列得到:101101
,所以十进制 45
的二进制表示为
10110
1
2
101101_2
1011012。
2. 小数部分转换为二进制
步骤:
- 不断将小数部分乘以2: 记录每次乘法得到的整数部分。
- 将整数部分依次排列: 继续乘以2,直到小数部分为0或达到所需的精度。
- 最终得到的整数部分串联起来: 形成小数部分的二进制表示。
例子: 将十进制小数 0.625
转换为二进制。
0.625 × 2 = 1.25 取出整数部分 1 0.25 × 2 = 0.5 取出整数部分 0 0.5 × 2 = 1.0 取出整数部分 1 ( 此时小数部分为 0 ) 0.625 \times 2 = 1.25 \quad \text{取出整数部分 } 1 \\ 0.25 \times 2 = 0.5 \quad \text{取出整数部分 } 0 \\ 0.5 \times 2 = 1.0 \quad \text{取出整数部分 } 1 \quad (\text{此时小数部分为 } 0) 0.625×2=1.25取出整数部分 10.25×2=0.5取出整数部分 00.5×2=1.0取出整数部分 1(此时小数部分为 0)
将这些整数部分按顺序排列得到:101
,所以 0.625
的二进制表示为
0.10
1
2
0.101_2
0.1012。
3. 组合整数部分和小数部分
将整数部分和小数部分组合起来,就得到了十进制数的完整二进制表示。
例子: 将 45.625
转换为二进制。
- 整数部分
45
的二进制表示为 10110 1 2 101101_2 1011012。 - 小数部分
0.625
的二进制表示为 0.10 1 2 0.101_2 0.1012。
因此,45.625
的二进制表示为
101101.10
1
2
101101.101_2
101101.1012。
总结
- 整数部分转换:通过不断除以2,记录余数并逆序排列。
- 小数部分转换:通过不断乘以2,记录整数部分并顺序排列。
- 完整数的表示:将整数部分和小数部分组合起来,即为完整的二进制数。