配置环境
1. conda 查看已有环境:
conda info -e
2. 创建一个conda 环境:
conda create -n my_conda python=3.6
3. 激活对应的环境:
conda activate my_conda
4.删除环境:
conda remove -n my_conda --all
5. 查看当前环境有哪些包
pip list
6. 复制对应的环境
conda create -n new_name --clone old_name
7. 安装一个包
pip install xxxx
8. 使用requirements.txt文件安装包
pip install -r requirements.txt
选择合适版本的CUDA驱动
1. 查看当前默认使用的 CUDA 版本:
nvcc -V
2. 打开并编辑 .bashrc
文件
vi ~/.bashrc
3. 在文件末尾添加以下代码,将 CUDA 驱动路径设置为想要使用的版本:
export PATH=/usr/local/cuda-<version>/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-<version>/lib64:$LD_LIBRARY_PATH
将 <version>
替换为希望使用的 CUDA 版本号。
4. 保存文件并退出编辑器。
:wq
:表示保存退出:wq!
:表示强制保存退出:x
:表示保存退出:q
:在vim中表示退出:q!
:表示强制不保存退出,不对文件进行保存
5. 在终端中执行以下命令,使环境变量生效:
source ~/.bashrc
离线运行代码
1. 创建屏幕
screen -S name
2. 挂起:Ctrl + A + D
3. 查看当前作业
screen -ls
4. 重新进入窗口
screen -r id/name
5. 删除作业
screen -X -S id/name quit
文件管理
1. 进入指定路径
cd /path
2. 查看当前文件夹下文件数目
ls -l | grep "^-" | wc -l
3. 删除指定文件夹
rm -rf /path
4. 当前文件夹下各文件夹占用空间
du -sh
: 查看当前目录总共占的容量,而不单独列出各子项占用的容量du -sh ./*
: 单独列出各子项占用的容量df -h
: 查看当前目录总共占的容量,而不单独列出各子项占用的容量
5. 跨服务器文件传输