不相交的线-动态规划1035-python

没看答案。

class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        '''
        state: dp[i][j]表示以nums1[i]和nums2[j]结尾时的最大连线数。
        basecase: 分别只考虑nums1[0]和nums2[0]时的结果。
        transfer: 1. 如果nums1[i]与nums2[j]不相等,
                     则dp[i][j]在两者有你没我,有我没你(dp[i-1][j], dp[i][j-1])中取最大。
                  2. 如果nums1[i]与nums2[j]相等,则在连于不连两种情况中取最大:
                       不连的情况即有你没我,有我没你(dp[i-1][j], dp[i][j-1]);
                       连的情况为拨除nums1[i]与nums2[j]后的结果,即dp[i-1][j-1];
                       最终dp[i][j]在以上三项中取最大。
        result: dp[-1][-1]
        '''
        
        m, n = len(nums1), len(nums2)
        dp = [[0] * n for _ in range(m)]
        
        for i in range(m):
            if nums2[0] == nums1[i]:
                dp[i][0] = 1
                continue

            dp[i][0] = max(0, dp[i-1][0])
        
        for j in range(n):
            if nums1[0] == nums2[j]:
                dp[0][j] = 1
                continue

            dp[0][j] = max(0, dp[0][j-1])

        for i in range(1, m):
            for j in range(1, n):
                if nums1[i] == nums2[j]:
                    dp[i][j] = max(dp[i-1][j], 
                                    dp[i][j-1],
                                    dp[i-1][j-1]+1)
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        
        return dp[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值