UVA446 JAVA版 Kibbles "n" Bits "n" Bits "n" Bits

本文深入探讨了Java中进制转换的实际应用,通过具体题目解析,介绍了如何将十六进制字符串转换为十进制整数,并进行加减运算,再将其转换为二进制字符串。文章提供了完整的代码实现,包括输入输出格式控制。

自我标记:进制转换
本次的四题JAVA,三题都是关于进制转换的,而JAVA中自带了很多关于进制转换的、好用的、可调用的方法,详情请前往:Java各类型数的进制转换
垃圾小玲的题解

UVA446 Kibbles “n” Bits “n” Bits “n” Bits

插一点题外话噢。
上次在机房看见有一个小改改,打开CSND,找了一篇博客,直接滑到代码区,连编译器都不开,
直接复制到提交页面,然后把一些注释啊,“转载请联系作者”啊之类的话,删了,就提交。
有种咽了一大口猪油的感觉。
UVA的题,百度上搜是搜不到JAVA版的,所以很大概率就是贴了我的代码上去吧。
分享代码是想大家一起进步,我并不想因为我,让你贪了一时之快,不会写可以慢慢学,
也可以问我噢,找得到我的博客,那你应该也找得到我。
如果这开头的一大段话你看了,那么恭喜你,CE问题可以得到解决了,你把第三行的Change改成
Main就行了,这个原理,在置顶的那篇博客里说过了。
如果这开头的一大段话你没看,那么恭喜你,真真正正地可以获得一个“研究非文件传输的JAVA代码
如何在东华土豆OJ上运行”的课题。
希望大家共同进步。
import java.util.Scanner;
import java.util.*;
public class Change{
	public static void main(String[] args) {
		int cas;
		Scanner reader = new Scanner(System.in);
		cas = reader.nextInt();
		while (cas > 0) {
			cas--;
			String s1 = reader.next();
			String op = reader.next();// 读入操作符噢
			String s2 = reader.next();
			int n1 = Integer.valueOf(s1, 16);// 16进制的s1转成10进制
			int n2 = Integer.valueOf(s2, 16);
			int sum;
			if ("+".equals(op))
				sum = n1 + n2;
			else
				sum = n1 - n2;
			String s3 = Integer.toBinaryString(n1);
			String s4 = Integer.toBinaryString(n2);
			// 格式控制
			int len1 = s3.length();
			int len2 = s4.length();
			while (len1 < 13) {
				s3 = '0' + s3;
				len1++;
			}
			while (len2 < 13) {
				s4 = '0' + s4;
				len2++;
			}
			System.out.println(s3 + ' ' + op + ' ' + s4 + " = " + sum);
		}
	}
}
内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值