// 蓝桥杯 强力党逗志芃
// 采用树形dp,树以链式前向星形式存储
#include <iostream>
using namespace std;
int power[205]; // 存每个技能的强度
int cnt = 0; // 边的编号,从1记起
int head[205]; // head[i] == 以i为父节点的所有边中,编号最大的边的编号,默认初始化为 0,也就是没有一条边以i为父节点
int n, m; // 含义如题
int ans[205][205]; //树形dp用到的数组,ans[i][j] == 以i为根节点,发展j个技能能达到的最大power值
struct edge { // 存边的结构体,v是边连接的子节点,u是边连接的父节点(不会直接用到所以不存),next是同样以u为父节点的上一条边的编号
int v;
int next;
} edges[205];
void add_edge(int u, int v) { // 顾名思义,这是加入边的函数
edges[++cnt].v = v;
edges[cnt].next = head[u];
head[u] = cnt;
}
// treedp函数要干的就是寻找以root为根节点,给0, 1, 2, ..., m个技能点能得到的最大power, 也就是ans[root][0], ..., ans[root][m]
void treedp(int root) {
for(int i=head[root] ;i>0; i=edges[i].next) {
// 遍历以root为依赖的子技能, i是root上的边的编号, 如果root是叶子节点便会直接跳过这个循环, 在
// 下一个循环中计算ans[root][i] = power[root] (i != 0) 即认为向叶子节点分配 >= 1个技能点,能达到的最大值都是power[root]
int v = edges[i].v;
treedp(v);
// 下面两个循环很细节,慢慢理解
for(int k=m;k>0;k--) { //求ans[root][k],
for(int h=k;h>0;h--) { // 向现在正在遍历的子节点分配h个技能点,向已经遍历子节点的分配k-h,看h取多少时ans[root][k]能达到最大
// 注意这个递推公式的含义,由题意,激活root技能也需要一个技能点
// ans[root][k] 是以root为根节点,向其已经遍历过的子节点分配k个技能点所能达到的power最大值,与我们最后要求的ans[root][k]的含义是不同的
// ,后者只能向其子节点分配k-1个技能点
// 外层循环一定要从大到小遍历,只有这样在每次计算ans[root][k]时,ans[root][k-h]才能代表“向已经遍历的root的子节点v们分配k-h个技能点所能
// 达到的power最大值”, 而不会错误的算入现在正在遍历的这个子节点
ans[root][k] = max(ans[root][k], ans[v][h] + ans[root][k-h]);
// 这样,当遍历完最后一个子节点时(或者遍历完最后一条出边),
// 就求出了ans[root][k] == 以root为根节点向其所有子节点分配k个技能点,能达到的power最大值
}
}
}
// 现在需要求出:以root为根节点,且拥有k个技能点(激活root会消耗一个)时,能达到的power最大值
// 这里也必须递减循环,道理比较简单,而且与上面那个外层循环一定要逆序遍历的道理类似
for(int i=m;i>=1;i--) ans[root][i] = ans[root][i-1] + power[root];
return ;
}
int main() {
cin >> n >> m;
for(int i=1;i<=n;i++) {
cin >> power[i];
}
int depend[205] = {0};
for(int i=1;i<=n-1;i++) {
int u, v; // v技能的开通依赖着u
cin >> u >> v;
depend[v] = 1;
add_edge(u, v);
}
int root; // 根本技能
for(int i=1;i<=n;i++) {
if(depend[i] == 0) {
root = i;
break;
}
}
treedp(root);
cout << ans[root][m];
}
蓝桥杯 强力党逗志芃 链式前向星结构的树形dp
最新推荐文章于 2024-01-08 17:00:55 发布