[斯特林数] Codeforces 932E. Team Work

Solution S o l u t i o n

可能也算是裸题了咯。

i=1n(ni)ik ∑ i = 1 n ( n i ) i k
用斯特林数把 ik i k 展开。
d=0kd!S(k,d)(nd)2nd ∑ d = 0 k d ! S ( k , d ) ( n d ) 2 n − d
O(k2) O ( k 2 ) 直接做了啦~

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 5050;
const int MOD = 1000000007;

int n, k;
int S[N][N];
int fac[N], ifac[N], inv[N];

inline int pwr(int a, int b) {
    int c = 1;
    while (b) {
        if (b & 1) c = (ll)c * a % MOD;
        b >>= 1; a = (ll)a * a % MOD;
    }
    return c;
}
inline void pre(int n) {
    inv[1] = 1;
    for (int i = 2; i <= n; i++)
        inv[i] = (ll)(MOD - MOD / i) * inv[MOD % i] % MOD;
    fac[0] = ifac[0] = 1;
    for (int i = 1; i <= n; i++) {
        fac[i] = (ll)fac[i - 1] * i % MOD;
        ifac[i] = (ll)ifac[i - 1] * inv[i] % MOD;
    }
}
inline int C(int n, int m) {
    int res = 1;
    for (int i = 0; i < m; i++) {
        res = (ll)res * (n - i) % MOD;
        res = (ll)res * inv[i + 1] % MOD;
    }
    return res;
}

int main(void) {
    freopen("1.in", "r", stdin);
    freopen("1.out", "w", stdout);
    cin >> n >> k;
    pre(k);
    S[0][0] = 1;
    for (int i = 1; i <= k; i++) {
        S[i][0] = 0;
        for (int j = 1; j <= i; j++)
            S[i][j] = ((ll)j * S[i - 1][j] + S[i - 1][j - 1]) % MOD;
    }
    int ans = 0;
    for (int d = 0; d <= k && d <= n; d++) {
        ans = (ans + (ll)fac[d] * S[k][d] % MOD * C(n, d) % MOD * pwr(2, n - d) % MOD) % MOD;
        // cerr << d << endl;
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值