昨晚北京再降大雨,感觉在北京过了一个假夏天一样。接下来的时间主要刷的是有关动态规划的题目,下面就和大家分享一下刚刷的这道题吧!
题目如下:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
题意分析:
有一个含n阶的楼梯,每次可以爬1阶或者2阶,请计算有多少种办法可走到楼梯的顶部。
方法一(记忆化搜索法)
其实将本题仔细一分析,不过就是斐波那契数列问题罢了,即f(n) = f(n-1) + f(n-2);但是如果直接用递归求解(时间复杂度:O(2的n次方))会得到一个“Time Limit Exceeded”的结果,经过分析是因递归求解过程中有很多重复的计算,所以需要考虑用一个数组memo去存放中间结果避免大量的重复计算,进而将O(2的n次方)时间复杂度将至O(n)。
解题代码如下:
class Solution{
private:
vector<int> memo;
int findclimbStairs( int n ){
if ( n == 1 )
return 1;
if ( n == 2 )
return 2;
//用于保留子问题的答案,以避免重复求解子问题
if ( memo[n] == -1 )
memo[n] = findclimbStairs( n - 1 ) + findclimbStairs( n - 2 );
return memo[n];
}
public:
int climbStairs( int n ){
memo = vector<int>( n+1, -1 );
return findclimbStairs( n );
}
};
提交后的结果如下:
方法二(动态规划法)
其实方法一是“自顶而下”的解决问题,而动态规划法是要“自底而上”的解决问题,不过大多数情况都是先考虑“自顶而下”的解决方法,然后在考虑“自底而上”的解决方法。首先考虑f(2) = f(2-2=0) + f(2-1=1),f(3) = f(3-2=1) + f(3-1=2)......依次类推,通过一个for循环不断地交错累加即可得到待求结果f(n)。很显然该方法的时间复杂度为O(n),空间复杂度为O(n)。
解题代码如下:
class Solution{
public:
int climbStairs( int n ){
vector<int> memo = vector<int>( n+1, -1 );
//memo[0] = 1 表示楼梯虽然没有阶梯但也需要爬1步
memo[1] = 1;
memo[0] = 1;
for ( int i = 2; i <= n; i++ ) {
memo[i] = memo[i-1] + memo[i-2];
}
return memo[n];
}
};
提交后的结果如下:
看看方法二提交的结果,足以甩去方法一好几条街,哈哈哈。
日积月累,与君共进,增增小结,未完待续。