函数与极限(2)—极限

数列的极限

数列极限的定义

  1. {xn} { x n } 为一数列,如果存在常数 a a ,对于任意给定的正数ϵ(不论它多么小),总存在正整数 N N ,使得当n>N时,不等式 |xna|<ϵ | x n − a | < ϵ 都成立,那么久称常数 a a 是数列{xn}的极限,或者称数列 {xn} { x n } 收敛于 a a ,记为limnxn=a,或 xnan x n → a ( n → ∞ )
  2. 如果不存在这样的常数a,就说数列 {xn} { x n } 没有极限,或者说数列 {xn} { x n } 是发散的,习惯上也说 limnxn lim n → ∞ x n 不存在

收敛数列的性质

  1. 极限的唯一性
    1. 如果数列 {xn} { x n } 收敛,那么它的极限唯一。如数列 xn=(1)n+1(n=1,2,...,) x n = ( − 1 ) n + 1 ( n = 1 , 2 , . . . , ) 是发散的
    2. 如果存在正数 M M ,使得数列{xn}中一切 {xn} { x n } 都满足不等式 |xn|M | x n | ≤ M ,则称数列 {xn} { x n } 是有界的。如果不存在这样的 M M ,则数列{xn}无界
  2. 收敛数列的有界性
    1. 如果数列 {xn} { x n } 收敛,那么数列 {xn} { x n } 一定有界
    2. 如果数列无界,那么数列一定发散;但若数列有界,却不一定收敛,如数列 1,1,1,...,(1)n+1,... 1 , − 1 , 1 , . . . , ( − 1 ) n + 1 , . . .
  3. 收敛数列的保号性
    1. 如果 limnxn=a lim n → ∞ x n = a ,且 a>0(a<0) a > 0 ( 或 a < 0 ) ,那么存在正整数 N>0 N > 0 ,当 n>N n > N 时,都有 xn>0(xn<0) x n > 0 ( 或 x n < 0 )
    2. 如果数列 {xn} { x n } 从某项起有 xn0xn0 x n ≥ 0 ( 或 x n ≤ 0 ) ,且 limnxn=a lim n → ∞ x n = a ,那么 a0 a ≥ 0 (或 a0 a ≤ 0 )
  4. 收敛数列与其子数列间的关系
    1. 如果数列 {xn} { x n } 收敛于 a a ,那么它的任一子数列也收敛,且极限也是a
    2. 如果数列 {xn} { x n } 有两个子数列收敛于不同的极限,那么数列 {xn} { x n } 是发散的

函数的极限

函数极限的定义

  1. 函数极限的定义
    1. 在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限
  2. 自变量趋于有限值时函数的极限
    1. 如果在 xx0 x → x 0 的过程中,对应的函数值 f(x) f ( x ) 无限接近于确定的数值 A A ,那么就说A是函数 f(x) f ( x ) xx0 x → x 0 时的极限(前提是函数 f(x) f ( x ) 在点 x0 x 0 的某个去心邻域内有定义)
    2. 邻域半径 δ δ 体现了 x x 接近x0的程度
    3. 设函数 f(x) f ( x ) 在点 x0 x 0 的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数 ϵ ϵ (不论它多么小),总存在正数 δ δ ,使得当 x x 满足不等式0<|xx0|<δ时,对应的函数值 f(x) f ( x ) 都满足不等式 |f(x)A|<ϵ | f ( x ) − A | < ϵ ,那么常数 A A 就叫做函数f(x) xx0 x → x 0 时的极限,记作 limxx0f(x)=A lim x → x 0 f ( x ) = A f(x)A f ( x ) → A (当 xx0 x → x 0
    4. 函数 f(x) f ( x ) xx0 x → x 0 时极限存在的充分必要条件时左极限及又极限各自存在并且相等,即 f(x0)=f(x+0) f ( x 0 − ) = f ( x 0 + )
  3. 自变量趋于无穷大时函数的极限
    1. 设函数 f(x) f ( x ) |x| | x | 大于某一正数时有定义,如果存在常数 A A ,对于任意给定的正数ϵ(不论它多么小),总存在着正数 X X ,使得当x满足不等式 |x|>X | x | > X 时,对应的函数值 f(x) f ( x ) 都满足不等式 |f(x)A|<ϵ | f ( x ) − A | < ϵ ,那么常数 A A 就叫做函数f(x) x x → ∞ 时的极限,记作 limxf(x)=A lim x → ∞ f ( x ) = A f(x)A(x) f ( x ) → A ( 当 x → ∞ )

函数极限的性质

  1. 函数极限的唯一性:如果 limxx0f(x) lim x → x 0 f ( x ) 存在,那么这极限唯一
  2. 函数极限的局部有界性:如果 limxx0f(x)=A lim x → x 0 f ( x ) = A ,那么存在常数 M>0 M > 0 δ>0 δ > 0 ,使得当 0<|xx0|<δ 0 < | x − x 0 | < δ 时,有 |f(x)|M | f ( x ) | ≤ M
  3. 函数极限的局部保号性:如果 limxx0f(x)=A lim x → x 0 f ( x ) = A ,且 A>0A<0 A > 0 ( 或 A < 0 ) ,那么存在常数 δ>0 δ > 0 ,使得当 0<|xx0|<δ 0 < | x − x 0 | < δ 时,有 f(x)>0 f ( x ) > 0 (或 f(x)<0 f ( x ) < 0
  4. 如果 limxx0f(x)=A(A0) lim x → x 0 f ( x ) = A ( A ≠ 0 ) ,那么就存在着 x0 x 0 的某一去心邻域 U˚(x0) U ˚ ( x 0 ) ,当 xU˚(x0) x ∈ U ˚ ( x 0 ) 时,就有 |f(x)|>|A|2 | f ( x ) | > | A | 2
  5. 函数极限与数列极限的关系:如果极限 limxx0f(x) lim x → x 0 f ( x ) 存在, {xn} { x n } 为函数 f(x) f ( x ) 的定义域内任一收敛于 x0 x 0 的数列,且满足: xnx0(nN+) x n ≠ x 0 ( n ∈ N + ) ,那么相应的函数值数列 {f(xn)} { f ( x n ) } 必收敛,且 limnf(x) lim n → ∞ f ( x )

无穷小与无穷大

无穷小

  1. 如果函数 f(x) f ( x ) xx0 x → x 0 (或 x x → ∞ )时的极限为零,那么称函数 f(x) f ( x ) 为当 xx0 x → x 0 (或 x x → ∞ )时的无穷小
  2. 在自变量的统一变化过程 xx0 x → x 0 (或 x x → ∞ )中,函数 f(x) f ( x ) 具有极限 A A 的充分必要条件时f(x)=A+a,其中 a a 是无穷小

无穷大

  1. 设函数f(x) x0 x 0 的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数 M M (不论它多么大),总存在正数δ(或正数 X X ),只要x适合不等式 0<|xx0|<δ 0 < | x − x 0 | < δ (或 |x|>M | x | > M ),对应的函数值 f(x) f ( x ) 总满足不等式 |f(x)|>M | f ( x ) | > M ,则称函数 f(x) f ( x ) 为当 xx0 x → x 0 (或 x x → ∞ )时的无穷大
  2. 在自变量的同一变化过程中,如果 f(x) f ( x ) 为无穷大,则 1f(x) 1 f ( x ) 为无穷小;反之,如果 f(x) f ( x ) 为无穷小,且 f(x)0 f ( x ) ≠ 0 ,则 1f(x) 1 f ( x ) 为无穷大

极限运算法则

  1. 有限个无穷小的和也是无穷小
  2. 有界函数与无穷小的乘积是无穷小
  3. 常数与无穷小的乘积是无穷小
  4. 有限个无穷小的乘积也是无穷小
  5. 如果 limf(x)=Alimg(x)=B lim f ( x ) = A , lim g ( x ) = B ,那么:
    1. lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x ) = A ± B
    2. lim[f(x)g(x)]=limf(x)limg(x)=AB lim [ f ( x ) ⋅ g ( x ) ] = lim f ( x ) ⋅ lim g ( x ) = A ⋅ B
    3. 若又有 B0 B ≠ 0 ,则 limf(x)g(x)=limf(x)limg(x)=AB lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) = A B
  6. 如果 limf(x) lim f ( x ) 存在,而 c c 为常数,则lim[cf(x)]=climf(x)。即在求极限时,常数因子可以提取到极限记号外面。因为 limc=c lim c = c
  7. 如果 limf(x) lim f ( x ) 存在,而 n n 是正整数,则lim[f(x)]n=[limf(x)]n
  8. 设有数列 {xn} { x n } {yn} { y n } ,如果 limnxn=Alimnyn=B lim n → ∞ x n = A , lim n → ∞ y n = B , 那么:
    1. limn(xn±yn)=A±B lim n → ∞ ( x n ± y n ) = A ± B
    2. limnxnyn=AB lim n → ∞ x n ⋅ y n = A ⋅ B
    3. yn0(n=1,2,...) y n ≠ 0 ( n = 1 , 2 , . . . ) B0 B ≠ 0 时, limnxnyn=AB lim n → ∞ x n y n = A B
  9. 如果 φ(x)ψ(x) φ ( x ) ≥ ψ ( x ) ,而 limφ(x)=alimψ(x)=b lim φ ( x ) = a , lim ψ ( x ) = b ,那么 ab a ≥ b
  10. 复合函数的极限运算法则:设函数 y=f[g(x)] y = f [ g ( x ) ] 是由函数 u=g(x) u = g ( x ) 与函数 y=f(u) y = f ( u ) 复合而成, f[g(x)] f [ g ( x ) ] 在点 x0 x 0 的某去心邻域内有定义,若 limxx0g(x)=u0limuu0f(u)=Aδ0>0 lim x → x 0 g ( x ) = u 0 , lim u → u 0 f ( u ) = A , 且 存 在 δ 0 > 0 ,当 xU˚(x0,δ0) x ∈ U ˚ ( x 0 , δ 0 ) 时,有 g(x)u0 g ( x ) ≠ u 0 ,则 limxx0f[g(x)]=limuu0f(u)=A lim x → x 0 f [ g ( x ) ] = lim u → u 0 f ( u ) = A

极限存在法则 两个重要极限

  1. 如果数列 {xn}{yn} { x n } 、 { y n } {zn} { z n } 满足下列条件:
    1. 从某项起,及 n0N ∃ n 0 ∈ N ,当 n>n0 n > n 0 时,有: ynxnzn y n ≤ x n ≤ z n
    2. limnyn=alimnzn=a lim n → ∞ y n = a , lim n → ∞ z n = a ,那么数列 {xn} { x n } 的极限存在,且 limnxn=a l i m n → ∞ x n = a
  2. 如果:
    1. xU˚(x0,r) x ∈ U ˚ ( x 0 , r ) (或 |x|>M | x | > M )时, g(x)f(x)h(x) g ( x ) ≤ f ( x ) ≤ h ( x )
    2. limxx0(x)g(x)=Alimxx0(x)h(x)=A lim x → x 0 ( x → ∞ ) g ( x ) = A , lim x → x 0 ( x → ∞ ) h ( x ) = A
    3. 那么 limxx0(x)f(x) lim x → x 0 ( x → ∞ ) f ( x ) 存在,且等于 A A
  3. 单调有界数列必有极限
    1. 单调增加和单调减少的数列统称为单调数列
    2. 如果数列不仅有界,并且是单调的,那么这数列的极限必定存在,也就是这数列一定收敛
  4. limx(1+1x)x=e
  5. 设函数 f(x) f ( x ) 在点 x0 x 0 的某个左邻域内单调并且有界,则 f(x) f ( x ) x0 x 0 的左极限 f(x0) f ( x 0 − ) 必定存在
  6. 柯西极限存在准则:数列 {xn} { x n } 收敛的充分必要条件是:对于任意给定的正数 ϵ ϵ ,存在着这样的正整数 N N ,使得当m>Nn>N时,就有 |xnxm|<ϵ | x n − x m | < ϵ

无穷小的比较

  1. 如果 limβα=0 lim β α = 0 ,就说 β β 是比 α α 高阶的无穷小,记作 β=o(α) β = o ( α )
  2. 如果 limβα= lim β α = ∞ ,就说 β β 是比 α α 低阶的无穷小;
  3. 如果 limβα=c0 lim β α = c ≠ 0 ,就说 β β α α 时同阶无穷小;
  4. 如果 limβαk=c0k>0 lim β α k = c ≠ 0 , k > 0 ,就说 β β 是关于 α α k k 阶无穷小;
  5. 如果limβα=1,就说 β β α α 高阶的无穷小,记作 α α ~ β β
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值