数列的极限
数列极限的定义
- 设 {xn} { x n } 为一数列,如果存在常数 a a ,对于任意给定的正数(不论它多么小),总存在正整数 N N ,使得当时,不等式 |xn−a|<ϵ | x n − a | < ϵ 都成立,那么久称常数 a a 是数列的极限,或者称数列 {xn} { x n } 收敛于 a a ,记为,或 xn→a(n→∞) x n → a ( n → ∞ )
- 如果不存在这样的常数a,就说数列 {xn} { x n } 没有极限,或者说数列 {xn} { x n } 是发散的,习惯上也说 limn→∞xn lim n → ∞ x n 不存在
收敛数列的性质
- 极限的唯一性:
- 如果数列 {xn} { x n } 收敛,那么它的极限唯一。如数列 xn=(−1)n+1(n=1,2,...,) x n = ( − 1 ) n + 1 ( n = 1 , 2 , . . . , ) 是发散的
- 如果存在正数 M M ,使得数列中一切 {xn} { x n } 都满足不等式 |xn|≤M | x n | ≤ M ,则称数列 {xn} { x n } 是有界的。如果不存在这样的 M M ,则数列无界
- 收敛数列的有界性:
- 如果数列 {xn} { x n } 收敛,那么数列 {xn} { x n } 一定有界
- 如果数列无界,那么数列一定发散;但若数列有界,却不一定收敛,如数列 1,−1,1,...,(−1)n+1,... 1 , − 1 , 1 , . . . , ( − 1 ) n + 1 , . . .
- 收敛数列的保号性:
- 如果 limn→∞xn=a lim n → ∞ x n = a ,且 a>0(或a<0) a > 0 ( 或 a < 0 ) ,那么存在正整数 N>0 N > 0 ,当 n>N n > N 时,都有 xn>0(或xn<0) x n > 0 ( 或 x n < 0 )
- 如果数列 {xn} { x n } 从某项起有 xn≥0(或xn≤0) x n ≥ 0 ( 或 x n ≤ 0 ) ,且 limn→∞xn=a lim n → ∞ x n = a ,那么 a≥0 a ≥ 0 (或 a≤0 a ≤ 0 )
- 收敛数列与其子数列间的关系:
- 如果数列 {xn} { x n } 收敛于 a a ,那么它的任一子数列也收敛,且极限也是
- 如果数列 {xn} { x n } 有两个子数列收敛于不同的极限,那么数列 {xn} { x n } 是发散的
函数的极限
函数极限的定义
- 函数极限的定义:
- 在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限
- 自变量趋于有限值时函数的极限:
- 如果在 x→x0 x → x 0 的过程中,对应的函数值 f(x) f ( x ) 无限接近于确定的数值 A A ,那么就说是函数 f(x) f ( x ) 当 x→x0 x → x 0 时的极限(前提是函数 f(x) f ( x ) 在点 x0 x 0 的某个去心邻域内有定义)
- 邻域半径 δ δ 体现了 x x 接近的程度
- 设函数 f(x) f ( x ) 在点 x0 x 0 的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数 ϵ ϵ (不论它多么小),总存在正数 δ δ ,使得当 x x 满足不等式时,对应的函数值 f(x) f ( x ) 都满足不等式 |f(x)−A|<ϵ | f ( x ) − A | < ϵ ,那么常数 A A 就叫做函数当 x→x0 x → x 0 时的极限,记作 limx→x0f(x)=A lim x → x 0 f ( x ) = A 或 f(x)→A f ( x ) → A (当 x→x0 x → x 0 )
- 函数 f(x) f ( x ) 当 x→x0 x → x 0 时极限存在的充分必要条件时左极限及又极限各自存在并且相等,即 f(x−0)=f(x+0) f ( x 0 − ) = f ( x 0 + )
- 自变量趋于无穷大时函数的极限:
- 设函数 f(x) f ( x ) 当 |x| | x | 大于某一正数时有定义,如果存在常数 A A ,对于任意给定的正数(不论它多么小),总存在着正数 X X ,使得当满足不等式 |x|>X | x | > X 时,对应的函数值 f(x) f ( x ) 都满足不等式 |f(x)−A|<ϵ | f ( x ) − A | < ϵ ,那么常数 A A 就叫做函数当 x→∞ x → ∞ 时的极限,记作 limx→∞f(x)=A lim x → ∞ f ( x ) = A 或 f(x)→A(当x→∞) f ( x ) → A ( 当 x → ∞ )
函数极限的性质
- 函数极限的唯一性:如果 limx→x0f(x) lim x → x 0 f ( x ) 存在,那么这极限唯一
- 函数极限的局部有界性:如果 limx→x0f(x)=A lim x → x 0 f ( x ) = A ,那么存在常数 M>0 M > 0 和 δ>0 δ > 0 ,使得当 0<|x−x0|<δ 0 < | x − x 0 | < δ 时,有 |f(x)|≤M | f ( x ) | ≤ M
- 函数极限的局部保号性:如果 limx→x0f(x)=A lim x → x 0 f ( x ) = A ,且 A>0(或A<0) A > 0 ( 或 A < 0 ) ,那么存在常数 δ>0 δ > 0 ,使得当 0<|x−x0|<δ 0 < | x − x 0 | < δ 时,有 f(x)>0 f ( x ) > 0 (或 f(x)<0 f ( x ) < 0 )
- 如果 limx→x0f(x)=A(A≠0) lim x → x 0 f ( x ) = A ( A ≠ 0 ) ,那么就存在着 x0 x 0 的某一去心邻域 U˚(x0) U ˚ ( x 0 ) ,当 x∈U˚(x0) x ∈ U ˚ ( x 0 ) 时,就有 |f(x)|>|A|2 | f ( x ) | > | A | 2
- 函数极限与数列极限的关系:如果极限 limx→x0f(x) lim x → x 0 f ( x ) 存在, {xn} { x n } 为函数 f(x) f ( x ) 的定义域内任一收敛于 x0 x 0 的数列,且满足: xn≠x0(n∈N+) x n ≠ x 0 ( n ∈ N + ) ,那么相应的函数值数列 {f(xn)} { f ( x n ) } 必收敛,且 limn→∞f(x) lim n → ∞ f ( x )
无穷小与无穷大
无穷小
- 如果函数 f(x) f ( x ) 当 x→x0 x → x 0 (或 x→∞ x → ∞ )时的极限为零,那么称函数 f(x) f ( x ) 为当 x→x0 x → x 0 (或 x→∞ x → ∞ )时的无穷小
- 在自变量的统一变化过程 x→x0 x → x 0 (或 x→∞ x → ∞ )中,函数 f(x) f ( x ) 具有极限 A A 的充分必要条件时,其中 a a 是无穷小
无穷大
- 设函数在 x0 x 0 的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数 M M (不论它多么大),总存在正数(或正数 X X ),只要适合不等式 0<|x−x0|<δ 0 < | x − x 0 | < δ (或 |x|>M | x | > M ),对应的函数值 f(x) f ( x ) 总满足不等式 |f(x)|>M | f ( x ) | > M ,则称函数 f(x) f ( x ) 为当 x→x0 x → x 0 (或 x→∞ x → ∞ )时的无穷大
- 在自变量的同一变化过程中,如果 f(x) f ( x ) 为无穷大,则 1f(x) 1 f ( x ) 为无穷小;反之,如果 f(x) f ( x ) 为无穷小,且 f(x)≠0 f ( x ) ≠ 0 ,则 1f(x) 1 f ( x ) 为无穷大
极限运算法则
- 有限个无穷小的和也是无穷小
- 有界函数与无穷小的乘积是无穷小
- 常数与无穷小的乘积是无穷小
- 有限个无穷小的乘积也是无穷小
- 如果
limf(x)=A,limg(x)=B
lim
f
(
x
)
=
A
,
lim
g
(
x
)
=
B
,那么:
- lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x ) = A ± B
- lim[f(x)⋅g(x)]=limf(x)⋅limg(x)=A⋅B lim [ f ( x ) ⋅ g ( x ) ] = lim f ( x ) ⋅ lim g ( x ) = A ⋅ B
- 若又有 B≠0 B ≠ 0 ,则 limf(x)g(x)=limf(x)limg(x)=AB lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) = A B
- 如果 limf(x) lim f ( x ) 存在,而 c c 为常数,则。即在求极限时,常数因子可以提取到极限记号外面。因为 limc=c lim c = c
- 如果 limf(x) lim f ( x ) 存在,而 n n 是正整数,则
- 设有数列
{xn}
{
x
n
}
和
{yn}
{
y
n
}
,如果
limn→∞xn=A,limn→∞yn=B,
lim
n
→
∞
x
n
=
A
,
lim
n
→
∞
y
n
=
B
,
那么:
- limn→∞(xn±yn)=A±B lim n → ∞ ( x n ± y n ) = A ± B
- limn→∞xn⋅yn=A⋅B lim n → ∞ x n ⋅ y n = A ⋅ B
- 当 yn≠0(n=1,2,...) y n ≠ 0 ( n = 1 , 2 , . . . ) 且 B≠0 B ≠ 0 时, limn→∞xnyn=AB lim n → ∞ x n y n = A B
- 如果 φ(x)≥ψ(x) φ ( x ) ≥ ψ ( x ) ,而 limφ(x)=a,limψ(x)=b lim φ ( x ) = a , lim ψ ( x ) = b ,那么 a≥b a ≥ b
- 复合函数的极限运算法则:设函数 y=f[g(x)] y = f [ g ( x ) ] 是由函数 u=g(x) u = g ( x ) 与函数 y=f(u) y = f ( u ) 复合而成, f[g(x)] f [ g ( x ) ] 在点 x0 x 0 的某去心邻域内有定义,若 limx→x0g(x)=u0,limu→u0f(u)=A,且存在δ0>0 lim x → x 0 g ( x ) = u 0 , lim u → u 0 f ( u ) = A , 且 存 在 δ 0 > 0 ,当 x∈U˚(x0,δ0) x ∈ U ˚ ( x 0 , δ 0 ) 时,有 g(x)≠u0 g ( x ) ≠ u 0 ,则 limx→x0f[g(x)]=limu→u0f(u)=A lim x → x 0 f [ g ( x ) ] = lim u → u 0 f ( u ) = A
极限存在法则 两个重要极限
- 如果数列
{xn}、{yn}
{
x
n
}
、
{
y
n
}
及
{zn}
{
z
n
}
满足下列条件:
- 从某项起,及 ∃n0∈N ∃ n 0 ∈ N ,当 n>n0 n > n 0 时,有: yn≤xn≤zn y n ≤ x n ≤ z n ,
- limn→∞yn=a,limn→∞zn=a lim n → ∞ y n = a , lim n → ∞ z n = a ,那么数列 {xn} { x n } 的极限存在,且 limn→∞xn=a l i m n → ∞ x n = a
- 如果:
- 当 x∈U˚(x0,r) x ∈ U ˚ ( x 0 , r ) (或 |x|>M | x | > M )时, g(x)≤f(x)≤h(x) g ( x ) ≤ f ( x ) ≤ h ( x ) ,
- limx→x0(x→∞)g(x)=A,limx→x0(x→∞)h(x)=A lim x → x 0 ( x → ∞ ) g ( x ) = A , lim x → x 0 ( x → ∞ ) h ( x ) = A ,
- 那么 limx→x0(x→∞)f(x) lim x → x 0 ( x → ∞ ) f ( x ) 存在,且等于 A A
- 单调有界数列必有极限:
- 单调增加和单调减少的数列统称为单调数列
- 如果数列不仅有界,并且是单调的,那么这数列的极限必定存在,也就是这数列一定收敛
- 设函数 f(x) f ( x ) 在点 x0 x 0 的某个左邻域内单调并且有界,则 f(x) f ( x ) 在 x0 x 0 的左极限 f(x−0) f ( x 0 − ) 必定存在
- 柯西极限存在准则:数列 {xn} { x n } 收敛的充分必要条件是:对于任意给定的正数 ϵ ϵ ,存在着这样的正整数 N N ,使得当时,就有 |xn−xm|<ϵ | x n − x m | < ϵ
无穷小的比较
- 如果 limβα=0 lim β α = 0 ,就说 β β 是比 α α 高阶的无穷小,记作 β=o(α) β = o ( α ) ;
- 如果 limβα=∞ lim β α = ∞ ,就说 β β 是比 α α 低阶的无穷小;
- 如果 limβα=c≠0 lim β α = c ≠ 0 ,就说 β β 与 α α 时同阶无穷小;
- 如果 limβαk=c≠0,k>0 lim β α k = c ≠ 0 , k > 0 ,就说 β β 是关于 α α 的 k k 阶无穷小;
- 如果,就说 β β 是 α α 高阶的无穷小,记作 α α ~ β β