向量组的线性相关性

向量组及其线性组合

  1. n n 个有次序的数a1,a2,...,an所组成的一个有序数组 (a1,a2,...,an) ( a 1 , a 2 , . . . , a n ) 称为一 n n 维向量,这n个数称为该向量的 n n 个分量,其中ai称为第 i i 个分量.ai(i=1,2,...,n)都为实数的向量称为实向量,分量为复数的向量称为复向量.n维向量可写成一行或一列,分别称为行向量或列向量,即行矩阵或列矩阵.列向量一般用小写黑体字母 α,β,γ α , β , γ 等表示,行向量则用 αT,βT,γT α T , β T , γ T 等表示.若干个同维数的列向量(行向量)组成的集合称为向量组.
    • 设向量 Aα1,α2,...,αm A : α 1 , α 2 , . . . , α m ,对于任意实数 k1,k2,...,km k 1 , k 2 , . . . , k m ,表达式 k1α1,k2α2,...,kmαm k 1 α 1 , k 2 α 2 , . . . , k m α m 称为向量组 A A 的一个线性组合.k1,k2,...,km称为这个线性组合的系数
    • 设向量组 Aα1,α2,...,αm A : α 1 , α 2 , . . . , α m 和向量 β β ,若存在一组数 λ1,λ2,...,λm λ 1 , λ 2 , . . . , λ m ,使得 β=λ1α1,λ2α2,...λmαm β = λ 1 α 1 , λ 2 α 2 , . . . λ m α m ,则称向量 β β 可由向量组 A A 线性表示
      (向量β能由向量组 A A 线性表示,也就是线性方程组x1α1+x2α2+...+xmαm=β有解)
      • 向量 β β 能由向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 线性表示的充分必要条件是矩阵 A=(α1,α2,...,αm) A = ( α 1 , α 2 , . . . , α m ) 的秩等于矩阵 B=(α1,α2,...,αm,β) B = ( α 1 , α 2 , . . . , α m , β ) 的秩.
      • 设向量组 Aα1,α2,...,αs A : α 1 , α 2 , . . . , α s 及向量组 Bβ1,β2,...,βt B : β 1 , β 2 , . . . , β t ,若向量组 B B 中的每个向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示.若向量组 A,B A , B 可互相线性表示,则称这两个向量组等价
      • 向量组的等价性具有下列性质:
        1. 反身性:任一向量组 Aα1α2...αm A : α 1 , α 2 , . . . , α m 与其自身等价;
        2. 对称性:如果向量组 Aα1α2...αs A : α 1 , α 2 , . . . , α s 与向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 等价,则向量组 B B 与向量组A等价;
        3. 传递性:如果向量组 Aα1α2...αs A : α 1 , α 2 , . . . , α s 与向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 等价,且向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 与向量组 Cγ1,γ2,...,γm C : γ 1 , γ 2 , . . . , γ m 等价,则向量组 A A 与向量组C等价.
      • 向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 能由向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s 线性表示的充分必要条件是矩阵 A=(α1α2...αs) A = ( α 1 , α 2 . . . , α s ) 的秩等于矩阵 (A,B)=(α1α2...αsβ1β2...βt) ( A , B ) = ( α 1 , α 2 . . . , α s , β 1 , β 2 , . . . , β t ) 的秩,即 R(A)=R(A,B) R ( A ) = R ( A , B )
      • 向量组 A(α1α2...αs) A : ( α 1 , α 2 . . . , α s ) 与向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 等价的充分必要条件是 R(A)=R(B)=R(A,B) R ( A ) = R ( B ) = R ( A , B ) ,其中 (A,B) ( A , B ) 是由向量组 A A B所构成的矩阵
      • 设向量组 Bβ1,β2,...,βt B : β 1 , β 2 , . . . , β t 能由向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s 线性表示,则 R(B)R(A) R ( B ) ≤ R ( A )
      • 向量组 Bβ1,β2,...,βt B : β 1 , β 2 , . . . , β t 能由向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s 线性表示:
        K使B=AK ⟺ 存 在 矩 阵 K , 使 B = A K
        AX=B ⟺ 矩 阵 方 程 A X = B 有 解
      • n n 维列向量组Aα1α2...αm构成 n×m n × m 矩阵 A=(α1α2...αm) A = ( α 1 , α 2 . . . , α m ) n n 阶单位阵E=(e1,e2,...,en)的列向量称为 n n 维基本单位向量.n维基本单位向量组 e1,e2,...,en e 1 , e 2 , . . . , e n 能由向量组 A A 线性表示的充分必要条件是R(A)=n.

向量组的线性相关性

  1. 设向量组 Aα1α2...αm A : α 1 , α 2 . . . , α m ,如果存在不全为零的数 k1,k2,...km k 1 , k 2 , . . . k m ,使得
    k1α1+k2α2+...+kmαm=0 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0
    成立,则称向量组 A A 线性相关,否则称向量组A线性无关.
    特别地, m=1 m = 1 时, α(0) α ( ≠ 0 ) 是线性相关的.对于含两个向量 α1,α2 α 1 , α 2 的向量组线性相关的充分必要条件是 α1α2 α 1 , α 2 的分量对应成比例,其几何意义是两向量共线.三个向量线性相关的几何意义是三个向量共面
    向量组 α1α2...αm(m2) α 1 , α 2 . . . , α m ( m ≥ 2 ) 线性相关,也就是在向量组中至少有一个向量可由其余 m1 m − 1 个向量线性表示
  2. 向量组 α1α2...αm α 1 , α 2 , . . . , α m 线性相关的充分必要条件是它所构成的矩阵 A=(α1,α2,...,αm) A = ( α 1 , α 2 , . . . , α m ) 的秩小于向量个数 m m ;向量组α1,α2,...,αm线性无关的充分必要条件是它所构成的矩阵 A=(α1,α2,...,αm) A = ( α 1 , α 2 , . . . , α m ) 的秩等于向量个数 m m .
  3. 若向量组α1α2...αm线性相关,则向量组 α1α2...αmαm+1 α 1 , α 2 . . . , α m , α m + 1 也线性相关;反之,若 α1α2...αm+1 α 1 , α 2 . . . , α m + 1 线性无关,则向量组 α1α2...αm α 1 , α 2 . . . , α m 也线性无关
  4. m m n维向量组成的向量组,当维数 n n 小于向量个数m时一定线性相关.特别地, n+1 n + 1 n n 维向量一定线性相关
  5. 设向量组Aα1α2...αm线性相关,而向量组 Bα1α2...αmβ B : α 1 , α 2 . . . , α m , β 线性相关,则向量 β β 能由向量组 A A 线性表示,且表达式是唯一的
  6. 设向量组Bβ1β2...βt可由向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s 线性表示,且 s<t s < t ,则向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 线性相关.
  7. 设向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 可由向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s 线性表示,若向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 线性无关,则 st s ≥ t .
  8. 设向量组 Aα1α2...αs A : α 1 , α 2 . . . , α s Bβ1β2...βt B : β 1 , β 2 , . . . , β t 等价,若向量组 A A B都是线性无关,则 s=t s = t

向量组的秩

  1. 设向量组 A0α1α2...αr A 0 : α 1 , α 2 , . . . , α r 是向量组 A A 的一个部分向量组,如果满足:
    1. 向量组A0α1α2...αr线性无关;
    2. 向量组 A A 中任意r+1个向量(如果存在的话)都线性相关,则称向量组 A0 A 0 是向量组 A A 的一个极大线性无关向量组(简称极大无关组).极大无关组所含向量个数r称为向量组 A A ,记作RA R(A) R ( A )
    • 由于一个非零向量本身线性无关,故包含非零向量的向量组一定存在极大无关组;而仅含零向量的向量组不存在极大无关组,规定它的秩为0.特别地,如果一个向量组线性无关,则其极大无关组就是该向量组本身.
    • 向量组 Aα1α2...αm A : α 1 , α 2 , . . . , α m 线性无关的充分必要条件是向量组 Aα1α2...αm A : α 1 , α 2 , . . . , α m 的秩等于 m m
    • 向量组Aα1α2...αm线性相关的充分必要条件是向量组 Aα1α2...αm A : α 1 , α 2 , . . . , α m 的秩小于 m m .
    • 设矩阵A的秩为 r r ,即R(A)=r.由矩阵的秩的定义,在矩阵 A A 中至少存在一r阶子式不等于零,而且所有的 r+1 r + 1 阶子式(如果存在)全为零.矩阵 A A 中包含这个r阶非零子式的列(行)向量组线性无关,且任意 r+1 r + 1 个列(行)向量所构成的向量组线性相关.因此,矩阵 A A 中包含这个r阶非零子式的列(行)向量组就是矩阵 A A 的列(行)向量组的一个极大无关组.
    • 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩
    • 极大无关组的等价定义:设向量组A0α1,α2,...,αr是向量组 A A 的一个部分向量组,且满足:
      1. 向量组A0线性无关;
      2. 向量组 A A 中任一向量都能由向量组A0线性表示.
        则向量组 A0 A 0 是向量组 A A 的一个极大无关组
    • 若向量组Bβ1β2...βt可由向量组 Aα1α2...αs A : α 1 , α 2 , . . . , α s 线性表示的充分条件是 R(α1α2...αs)=R(α1α2...αs,β1β2...βt) R ( α 1 , α 2 , . . . , α s ) = R ( α 1 , α 2 , . . . , α s , β 1 , β 2 , . . . , β t )
    • 若向量组 Bβ1β2...βt B : β 1 , β 2 , . . . , β t 能由向量组 Aα1α2...αs A : α 1 , α 2 , . . . , α s 线性表示,则 R(β1β2...βt)R(α1α2...αs) R ( β 1 , β 2 , . . . , β t ) ≤ R ( α 1 , α 2 , . . . , α s )
    • 若向量组 B B 能由向量组A线性表示,且它们的秩相等.则向量组 A A 与向量组B等价
    • 向量空间

      • V V n维向量的集合,如果集合 V V 非空,且集合V对向量的加法及数乘两种运算封闭,则称集合 V V 向量空间
        所谓封闭,是指在集合V中可以进行加法及数乘两种运算,具体地说就是:对任意 αVβV α ∈ V , β ∈ V , α+βV α + β ∈ V ;对任意 αV,λR α ∈ V , λ ∈ R ,有 λαV λ α ∈ V
      • αβ α , β 为两个已知的 n n 维向量,集合L={x=λα+μβ|λ,μR}是一个向量空间,称其为由向量 α,β α , β 所生成的向量空间
        一般地,由向量组 α1,α2,...,αm α 1 , α 2 , . . . , α m 所生成的向量空间为
        L={x=λ1α1+λ2α2+...+λmαm|λ1,λ2,...,λmR} L = { x = λ 1 α 1 + λ 2 α 2 + . . . + λ m α m | λ 1 , λ 2 , . . . , λ m ∈ R }
      • 设有向量空间 V1 V 1 V2 V 2 ,若 V1V2 V 1 ⊂ V 2 ,则称 V1 V 1 V2 V 2 的子空间
      • V V 为向量空间,如果r个向量 α1,α2,...,αrV α 1 , α 2 , . . . , α r ∈ V ,且满足:
        1. α1,α2,...,αr α 1 , α 2 , . . . , α r 线性无关;
        2. V V 中任一向量α都可由 α1,α2,...,αr α 1 , α 2 , . . . , α r 线性表示.
          则称向量组 α1,α2,...,αr α 1 , α 2 , . . . , α r 为向量空间 V V 一个基.r为向量空间 V V 维数,记为dimV=r,并称 V V r维向量空间(0维向量空间只含一个零向量.任一 n n 个线性无关的n维向量都是向量空间 Rn R n 的一个基,由此可知 Rn R n 的维数为 n n .所以,把Rn称为 n n 维向量空间)
          特别地,在Rn中取基本单位向量组 e1,e2,...,en e 1 , e 2 , . . . , e n 为基,则以 x1,x2,...,xn x 1 , x 2 , . . . , x n 为分量的向量 x x 可表示为x=x1e1+x2e2+...+xnen.可见,向量 x x 在基e1,e2,...,en下的坐标就是该向量的分量,称 e1,e2,...,en e 1 , e 2 , . . . , e n Rn R n 自然基

    线性方程组解的结构

    1. n n 元齐次线性方程组
      (1){a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0...am1x1+am2x2+...+amnxn=0
      ,其矩阵表示形式为
      Ax=0 A x = 0 ,
      其中 A=(aij)m×nx=(x1,x2,...,xn)T A = ( a i j ) m × n , x = ( x 1 , x 2 , . . . , x n ) T .若 x1=ξ11,x2=ξ21,...,xn=ξn1 x 1 = ξ 11 , x 2 = ξ 21 , . . . , x n = ξ n 1 为方程组(1)的解,则称 x=ξ1=ξ11ξ21...ξn1 x = ξ 1 = ( ξ 11 ξ 21 . . . ξ n 1 ) 为方程组(1)的解向量
    2. ξ1,ξ2 ξ 1 , ξ 2 都是方程组(1)的解,则 ξ1+ξ2 ξ 1 + ξ 2 也是方程组(1)的解
    3. ξ1 ξ 1 是方程组(1)的解, k k 为实数,则kξ1也是方程组(1)的解
    4. 方程组(1)的全体解向量构成的集合 S={x|Ax=0} S = { x | A x = 0 } 对向量的线性运算封闭.从而是一向量空间,称其为齐次线性方程组 Ax=0 A x = 0 解空间
    5. R(A)=r R ( A ) = r ,方程组的所有解 x x 均可由ξ1,ξ2,...,ξnr线性表示.又因矩阵 (ξ1,ξ2,...,ξnr) ( ξ 1 , ξ 2 , . . . , ξ n − r ) 中有 nr n − r 阶子式 |Enr|0 | E n − r | ≠ 0 ,故 R(ξ1,ξ2,...,ξnr)=nr R ( ξ 1 , ξ 2 , . . . , ξ n − r ) = n − r ,所以 ξ1,ξ2,...,ξnr ξ 1 , ξ 2 , . . . , ξ n − r 线性无关.根据向量空间基的定义, ξ1,ξ2,...,ξnr ξ 1 , ξ 2 , . . . , ξ n − r 是方程组(1)解空间的一个基,称其为方程组(1)的基础解系. ξ1,ξ2,...,ξnr ξ 1 , ξ 2 , . . . , ξ n − r 的线性组合 x=c1ξ1+c2ξ2+...+cnrξnr(c1,c2,...,cnr x = c 1 ξ 1 + c 2 ξ 2 + . . . + c n − r ξ n − r ( c 1 , c 2 , . . . , c n − r 为任意实数)即为方程组(1)的全部解也称为通解
    6. n n 元齐次线性方程组(1)的系数矩阵A的秩 R(A)=r<n R ( A ) = r < n ,则该方程组的解空间 S={x|Ax=0} S = { x | A x = 0 } 的维数为 nr. n − r . 其解空间 V V 可表示为
      V={x=c1ξ1+c2ξ2+...+cnrξnr|c1,c2,...,cnrR}

      R(A)=n R ( A ) = n 时,方程组(1)只有零解,没有基础解系

    n n 元非齐次线性方程组

    (2){a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...am1x1+am2x2+...+amnxn=bm.
    其矩阵表示形式

    Ax=b A x = b
    ,对应的齐次线性方程组为 Ax=0 A x = 0
    7. 设 η1η2 η 1 , η 2 都是方程组(2)的解,则 η1η2 η 1 − η 2 是对应的齐次线性方程组 Ax=b A x = b 的解
    8. 设 η η ∗ 是非齐次线性方程组(2)的解, ξ ξ 是对应的齐次线性方程组 Ax=0 A x = 0 的解,则 ξ+η ξ + η ∗ 是非齐次线性方程组(2)的解
    9. 非齐次线性方程组(2)的通解可表示为:
    x=c1ξ1+c2ξ2+...+cnrξnr+η x = c 1 ξ 1 + c 2 ξ 2 + . . . + c n − r ξ n − r + η ∗
    ,其中 c1,c2,...,cnr c 1 , c 2 , . . . , c n − r 为任意实数

  • 16
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值