机器学习算法——概率类模型评估指标4(校准可靠性曲线及预测概率直方图)

本文探讨了机器学习中概率模型的评估,主要介绍预测概率直方图的绘制以及通过等近似回归进行概率校准的两种方法:Platt的Sigmoid模型和等渗回归。使用sklearn库的CalibratedClassifierCV类进行校准,并强调了校准应在模型未见过的数据上进行。
摘要由CSDN通过智能技术生成

一、预测概率直方图

我们可以通过绘制直方图来查看模型的预测概率的分布。

直方图以样本的预测概率分箱后的结果为横坐标,每个箱中的样本数量为纵坐标绘制一个图像。

具体代码实现为:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression as LR
import matplotlib.pyplot as plt

data = load_breast_cancer()
X = data.data
print(X.shape)
y = data.target

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3, random_state=420)

fig, ax1 = plt.subplots(figsize=(8, 6))
estimators = [GaussianNB().fit(Xtrain, Ytrain)
              , LR(solver='lbfgs', max_iter=5000, multi_class='auto').fit(Xtrain,Ytrain)
              , SVC(kernel='rbf', probability=True).fit(Xtrain,Ytrain)
              ]
name = ['GaussianNB', 'LogisticRegression', 'SVC']
for i, estimator in enumerate(estimators):
    proba = estimator.predict_proba(Xtest)[:,0]
    ax1.hist(proba
             , bins=10
             , label = name[i]
             , histtype = "step" #直方图设置为透明色
             , lw = 2 #直方图柱子描边的粗细
             , density = True
    )
ax1.set_xlabel("Distribution of 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值