机器学习算法——概率类模型评估指标1(布里尔分数Brier Score)

本文介绍了概率预测的校准程度概念,并重点讨论了布里尔分数(Brier Score)作为评估概率模型精度的指标。布里尔分数是预测概率与真实结果之间差异的均方误差,越接近0表示预测效果越好。在 sklearn 中,布里尔得分用于评估二分类问题。文章通过实例展示了如何处理多分类问题时计算布里尔分数,涉及哑变量的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率预测的准确程度被称为“校准程度”,是衡量算法预测出的概率和真实结果的差异的一种方式。

一种常用的指标叫做布里尔分数,它被计算为是概率预测相对于测试样本的均方误差(MSE)。

MSE通常用作回归问题的损失函数。MSE的公式为

MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i-\hat{Y_i})^2

预测值为\hat{Y},真实值为Y。

由MSE推出布里尔分数(Brier Score)的公式为:

Brier \ Score = \frac{1}{N} \sum_{i=1}^{n} (p_i - o_i)^2

其中,N是样本数量,p_i为朴素贝叶斯预测出的概率,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值