Python之数据分析(numpy裁剪、压缩、累乘,样本相关性曲线的绘制)

一、裁剪、压缩、累乘

1、裁剪

  • 概念:指的是削掉波峰或波谷这类型的,将调用数组中小于min的元素设置为min,大于max的元素设置为max
  • 用法:ndarray.clip(min=最小值, max=最大值)

2、压缩

  • 概念:返回调用数组中满足给定条件的元素
  • 用法:ndarray.compress(条件)

3、累乘

  • 结果累乘:返回调用数组中各元素的乘积,是累乘结果
    ndarray.prod()
  • 过程累乘:返回调用数组中个元素计算累乘的过程数组,是累乘过程
    ndarray.cumprod()

4、练习代码

import numpy as np
a = np.arange(1, 10).reshape(3, 3)
print(a)

# 裁剪
b = a.clip(min=3, max=7)
print('-------------\n', b)

# 压缩
c = a.compress(a.ravel() > 3).reshape(-1, 3)
# 压缩只能处理一维数组,因此需要ravel扁平化一下,在reshape变为任意行3列的二维数组
print('-------------\n', c)
# 因为条件两边都是布尔型数组,不是单单的布尔值,不能用and
# 当有多个条件时,需要用 & 符号做与运算,并且在两边加上小括号()
d = a.compress((3 < a.ravel()) & (a.ravel() < 7))
print('-------------\n', d)

# 累乘结果
e = a.prod()
print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸿蒙Next

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值