相关性曲线图及相关性热图

该文展示了使用R语言进行数据读取,包括readxl和read.csv函数,以及利用ggplot2进行数据可视化,特别是ggpairs函数创建散点图矩阵。此外,还详细阐述了如何用corrplot库进行相关性分析,包括热图的绘制和聚类处理,强调了显著性水平的设定。
摘要由CSDN通过智能技术生成


# 加载 readxl 包
library(readxl)

# 读取 xlsx 文件
df<-read.csv("Seed_Data.csv")
df <- read_excel("XG.xlsx")
df <- read_excel("random_forest.xlsx",sheet = 'line_XG2')
#(更正一下,先加载包再读入表格数据,其中read后面是下划线,不是点点)
head(df)

#install.packages("GGally")
library("GGally")
#ggpairs(df,columns = 1:21) 
#ggpairs(df,columns = 1:7) 
ggpairs(df,columns = 1:8) 
df$target<-factor(df$target)
cols<-c("steelblue","yellowgreen","violetred1")
p<-ggpairs(df,
           columns = 1:8,
           aes(color=target))+
  scale_color_manual(values = cols)+
  scale_fill_manual(values = cols)+
  theme_bw()+
  theme(axis.text = element_text(colour = "black",
                                 size = 11),
        strip.background = element_rect(colour = "white",
                                        size=12),
        strip.text = element_text(face="bold"))
print(p)http://127.0.0.1:12819/graphics/plot_zoom_png?width=1463&height=844



#........................相关性分析..........
# 加载 readxl 包
library(readxl)

# 读取 xlsx 文件
mydata <- read_excel("random_forest.xlsx",sheet = 'blue_XG2')
library('corrplot')
#mydata <- read.xlsx("MMMM.xlsx",sheet="Sheet2")#读取表格MMMM中的sheet2里面的数据

View(mydata)# 这个就是看看你导入的数据,欣赏一下,不想看的话直接删除这一行就行
mydata <-as.matrix(mydata)
corr<-cor(mydata)
corrplot(corr)
corrplot(corr,tl.col = 'black')
corrplot(corr,tl.col = 'black',order = 'hclust')

corrl<-cor.mtest(mydata)#组内相关性分析,有了这一步可以在后续设置显著性水平corrl$p# 把P值调出来,热图上面标的星号按照P值这个原则
corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p, insig = 'blank')#对图像进行聚类处理,把显著相关的显示,其余的不要了

corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p,insig = 'label_sig',sig.level = c(0.001,0.01,0.05),
         pch.cex = 1,pch.col = 'red',type = 'upper')
# ,type = 'upper'把这个删除就是正方形了,沿着主轴对称,这里解释一下,正方形和三角形说明的问题都一样,正方形就是对称的

corrplot.mixed(corr,tl.col = 'black',order = 'hclust',tl.pos = "lt",diag = 'l',
               p.mat = corrl$p,insig = 'label_sig',sig.level = c(0.001,0.01,0.05),
               pch.cex = 1,pch.col = 'red')
#这个代码的意思是左下角显示相关性值的大小,右上显示图形的大小。这幅图从数值大小。
# 颜色深浅,圆圈大小都用来说明相关性这一个问题,其实都在说明一个问题
#换句话说,这三个解释相关性的方式是相互独立的,你单独拿出来哪一个都能说明问题,图形的丰富表达形式,只不过满足不同读者的阅读习惯和需求。

# 最后总结,相关性热图比较好做,复制上述代码,导入文件后就能按照需求,选择一个合适的图
corrplot.mixed(corr,tl.col = 'black',order = 'hclust',tl.pos = "lt",diag = 'l',
               p.mat = corrl$p,insig = 'label_sig',sig.level = c(0.001,0.01,0.05),
               pch.cex = 1,pch.col = 'black',insig = 'blank')

corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p, insig = 'blank')#对图像进行聚类处理,把显著相关的显示,其余的不要了

png(filename = "昆虫蓝色聚类2.png",width = 3000,
    
    height = 3000,units = "px",bg="white",res=300)#创作画布

corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p, insig = 'blank')#拓印画布

dev.off()




corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p, insig = 'blank',type = 'upper')#对图像进行聚类处理,把显著相关的显示,其余的不要了

png(filename = "昆虫蓝色聚类3.png",width = 3000,
    
    height = 3000,units = "px",bg="white",res=300)#创作画布

corrplot(corr,tl.col = 'black',order = 'hclust',
         p.mat = corrl$p, insig = 'blank',type = 'upper')#拓印画布

dev.off()


数据整理形式:

图1-1 相关性曲线图数据整理

 图1-2相关性曲线图数据整理

图1-3成图 

图2-1 相关性热图数据整理形式 

 图2- 2相关性热图数据整理形式 

 图2-3成图 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值