【树莓派】智能垃圾分类项目

这是一个基于树莓派4B的智能垃圾分类项目,使用PyTorch和PyQT,曾荣获江苏省工训赛特等奖。系统具备5-6秒的垃圾检测速度,支持超声波满载检测,物理按键控制,以及哈希感知算法。UI界面包含垃圾桶状态、垃圾数量和图像显示等功能,并提供轻量级代码和项目资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023.3.9追加:

求求你们别搞我了,怎么有这么多人程序都没看就来问问题,好歹也了解一下pyqt和python吧,怎么这么多伸手党。你以为就你需要做比赛和毕设吗?

我欢迎在某些深入的方面问我问题,但是你上来抛一个很基础的问题是不是觉得我很闲?

这个项目已经过去两年了,好多东西我也记不清了,让我现在去部署一个我也得费很大的劲。而且我已经不再参与和控制有关的项目/比赛了。

下面是原来的内容:

RT

基于树莓派4b的智能垃圾分类系统,涉及pytorch,pyqt。

为第七届工训赛设计,获江苏省特等奖,第五名无缘国赛。

也可以当作毕设。

检测时间5-6秒一个,如果有特制托盘则可以一次投两个不同类垃圾

可以用超声波传感器检测垃圾桶是否已满

可以接物理按键控制程序

哈希感知算法自动检测托盘是否有垃圾

有完整的UI界面,可以自动循环播放宣传视频、显示垃圾桶状况、垃圾个数、检测到的垃圾图片等等

轻量化代码,易修改

代码、项目书、电气原理图、UG垃圾桶结构图、实物等都有

Gitee传送门:基于树莓派的智能垃圾分类系统: 基于树莓派4b的智能垃圾分类系统,涉及pytorch,pyqt。 为第七届工训赛设计,获江苏省特等奖,第五名无缘国赛。 也可以当作毕设。 (gitee.com)

比赛需要故只开源了粗劣的第一个版本demo实现,第二版本改进使用yoloV3模型进行垃圾分类检测,机器臂分拣垃圾,垃圾分类数据集重新收集,并有微信小程序的用户查询垃圾分类及反馈机制 注意看ReadMe文件,注意看ReadMe文件,注意看ReadMe文件 B站视频介绍地址:https://www.bilibili.com/video/av80830870 交流群:1074171553 题主双非师范院校2021考研狗,如果你觉得这个小项目有帮助到你,请为项目点一个star,不管是考试型选手毕设项目被迫营业还是直接拿去二开参加比赛,这些都没问题,开源项目就是人人为我我为人人,但请尊重他人劳动成果,大家都是同龄人.心上无垢,林间有风. 材料清单 树莓派 1个 pca9685 16路舵机驱动板 1个 7寸可触摸显示屏一个 MG996R 舵机4个 垃圾桶4个 usb免驱动摄像头1个 树莓派GPIO扩展板转接线柱1个 硅胶航模导线若干 环境需求 1.开发环境 神经网络搭建—python 依赖 tensorflow,keras 训练图片来源华为云2019垃圾分类大赛提供 训练图片地址:https://developer.huaweicloud.com/hero/forum.php?mod=viewthread&tid=24106 下载图片文件后将文件解压覆盖为 garbage_classify 放入 垃圾分类-本地训练/根目录 神经网络开源模型--- resnet50 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 2.运行开发环境 进入 "垃圾分类-本地训练"目录 环境初始化 python3 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 train.py开启训练 2.命令python3 predict_local.py开启输入图片测试 3. 训练服务模型部署 进入 "垃圾分类-服务部署"目录 output_model 目录存放的是本地训练完成导出的h5模型文件 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 环境初始化 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 run.py开启窗口本地调试 2.命令python3 flask_sever.py开启服务部署 3.命令sh ./start.sh开启后台运行服务部署 4.树莓派界面搭建 基于nodejs electron-vue 强烈建议使用cnpm来安装nodejs库 进入 "树莓派端/garbage_desktop"目录 安装依赖 cnpm install 开发模式 cnpm run dev 打包发布 cnpm run build 5.树莓派端flask-api接口操作硬件 进入"进入 "树莓派端/garbage_app_sever"目录" 注意树莓派应该开启I2C,确保pca9685 I2C方式接入后可显示地址 命令:i2cdetect -y 1 查看 地址项 0x40是否已经接入树莓派 运行 python3 app_sever.py 或者 sh start.sh 启动 若提示缺少依赖: pip3 install adafruit-pca9685 pip3 install flask
根据引用中提供的信息,树莓派垃圾分类识别代码是一个基于神经网络进行图像识别处理的代码,用于垃圾分类。该代码包含垃圾分类数据集和TensorFlow代码。你可以通过下载完整的代码来进行使用和学习。下载地址可以在引用中找到。 另外,根据引用中的信息,你可以下载垃圾分类的图片文件,并将其解压后覆盖到"garbage_classify"文件夹中,放入垃圾分类-本地训练的根目录中。 请注意,根据引用中的说明,目前开源版本只是一个粗糙的第一个版本的演示实现。第二个版本进行了改进,使用了yoloV3模型进行垃圾分类检测,并利用机器臂进行垃圾分拣。同时,也重新收集了垃圾分类数据集,并提供了微信小程序供用户查询垃圾分类和反馈机制。请仔细阅读ReadMe文件以获取更详细的信息。 综上所述,树莓派垃圾分类识别可以通过使用神经网络进行图像识别处理,实现垃圾的分拣和分类。你可以通过下载相应的代码和数据集来进行学习和实践。请确保遵循ReadMe文件中的指导。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python基于树莓派垃圾分类识别代码,含垃圾分类数据集和tf代码,使用神经网络进行图像识别处理](https://blog.csdn.net/weixin_42756970/article/details/128559326)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [基于树莓派垃圾分类识别,师院17级小透明投稿备份来自汤老师的《物联网项目规划与实施》课程期末作业展示...](https://download.csdn.net/download/weixin_44510615/20080096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值