1.数字三角形
题目描述
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输入格式
第一行包含整数 n
,表示数字三角形的层数
接下来 n
行,每行包含若干整数,其中第 i
行表示数字三角形第 i
层包含的整数。
输出格式
输出一个整数,表示最大的路径数字和。
样例 #1
样例输入 #1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出 #1
30
提示
1 ≤ n ≤ 500
−10000 ≤ 三角形中的整数 ≤ 10000
一.题意:给数字三角形,从三角形的顶部到底部有很多条不同的路径。路径上的每一步只能从一个数走到下一层上和它最近的左边的那个数或者右边的那个数。对于每条路径,把路径上面的数加起来可以得到一个和,找到里面最大的和。
二.思路:先利用二维数组存每个数值,然后从三角形行数-1行开始走,先遍历最后一行计算倒数第二行的新值,依此类推,最后输出三角形顶端的那个数即可,也可以正着行走。
#include<bits/stdc++.h>
using namespace std;
const int N = 510, INF = 1e9;
int n;
int g[N][N], f[N][N];
int main()
{
cin >> n;
for (int i = 0; i <= n; i ++ )
for (int j = 0; j <= n; j ++ )
f[i][j] = -INF;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= i; j ++ )
cin >> g[i][j];
f[1][1] = g[1][1];
for (int i = 2; i <= n; i ++ )
for (int j = 1; j <= i; j ++ )
f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + g[i][j];
int res = -INF;
for (int i = 1; i <= n; i ++ )
res = max(res, f[n][i]);
cout << res << endl;
return 0;
}