线性Dp(题)

该问题是一个典型的动态规划问题,目标是找到从数字三角形顶部到底部的最大路径和。通过构建二维数组并从最后一行开始回溯,计算每个位置的最大和,最终得到三角形顶端的数作为答案。
摘要由CSDN通过智能技术生成

1.数字三角形

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

输入格式

第一行包含整数 n
,表示数字三角形的层数

接下来 n
行,每行包含若干整数,其中第 i
行表示数字三角形第 i
层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

样例 #1

样例输入 #1

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

样例输出 #1

30

提示

1 ≤ n ≤ 500

−10000 ≤ 三角形中的整数 ≤ 10000

一.题意:给数字三角形,从三角形的顶部到底部有很多条不同的路径。路径上的每一步只能从一个数走到下一层上和它最近的左边的那个数或者右边的那个数。对于每条路径,把路径上面的数加起来可以得到一个和,找到里面最大的和。

二.思路:先利用二维数组存每个数值,然后从三角形行数-1行开始走,先遍历最后一行计算倒数第二行的新值,依此类推,最后输出三角形顶端的那个数即可,也可以正着行走。

#include<bits/stdc++.h>
using namespace std;

const int N = 510, INF = 1e9;

int n;
int g[N][N], f[N][N];

int main()
{
	cin >> n;
	
	for (int i = 0; i <= n; i ++ )
		for (int j = 0; j <= n; j ++ )
			f[i][j] = -INF;
	
	for (int i = 1; i <= n; i ++ )
		for (int j = 1; j <= i; j ++ )
			cin >> g[i][j];
	
	f[1][1] = g[1][1];		
	for (int i = 2; i <= n; i ++ )
		for (int j = 1; j <= i; j ++ )
			f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + g[i][j];
	
		
	int res = -INF;
	
	for (int i = 1; i <= n; i ++ ) 
		res = max(res, f[n][i]);
	
	cout << res << endl;
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冬樱春雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值