回归分析的假定:原因、修正、后果和检验

回归分析中常见的问题包括异方差性、自相关性、多重共线性和异常值等。异方差性可能由解释变量遗漏、模型设定错误等导致,可通过加权最小二乘法或模型变换来修正。自相关可能源于误差项本身的关联,修正方法包括一阶差分法和HAC方法。多重共线性可能导致参数估计不稳,可通过容忍度和方差扩大因子等检验,删除相关自变量。异常值的处理包括删除或使用BOOTSTRAP等方法。整个过程中,检验如Spearman Rank、DW统计量和Cook's Distance等扮演关键角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 异方差
    • 原因
      • 省略了某些解释变量
      • 模型设定误差
        • 非线性设成了线性
      • 测量误差
      • 截面数据
        • 主因
    • 修正
      • 找到被省略的变量加到模型中
      • 结合实际找到合适模型
      • 通过事先手段减少此类情况
      • 加权最小二乘
        • 小方差加大权,大方差加小权
      • 异方差稳健标准误法
      • 模型的对数变换
        • Box-Cox的一种
    • 后果
      • 最小二乘
        • 仍有无偏性
        • 不具有效性
        • 大样本
          • 没有渐近有效性
      • t检验
        • 失效
      • 预测
        • 失效
    • 检验
      • 图示法
        • XY散点图
        • 残差图
      • 统计检验法
        • 思想
          • 检验残差是否随x变化而变化
        • Spearman Rank(斯皮尔曼等级)
          考过真题
        • Gleiser
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值