【回归】回归分析中的假定:什么假定?为什么要满足?(为什么会违背?)违背假定的后果?怎样检验?如何改进?(未完)

本文探讨了回归分析中的关键假定,包括线性关系、误差项的零均值、同方差性和不相关性等。高斯-马尔可夫条件是这些假定的一个核心部分,确保最小二乘估计量的最优性。不满足假定可能导致估计不准确,影响模型的解释和预测能力。文章还提到了模型建立的重要性、检验假定的方法以及处理如异方差性等问题的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 回归方程的假定是什么?

大前提:回归分析模型是正确设立的,具有可解释的经济意义(即模型是通过研究经济理论、选择变量及函数、收集整理统计数据而建立的)。

(1)y 与 x 线性关系

(2)重复抽样中,x 是非随机的(固定的,因为“原因明确”),但 y 是随机的。

(3)对随机误差项 ξi 的假定:零均值、同方差、不相关(即不自相关)

               Eξi=0;Cov(ξi,ξi)=σ^2;Cov(ξi,ξj)=0(i≠j)

(4)随机误差项满足正态分布, ξi ~ N(0, σ^2)

(5)xi 与 ξi 间不相关(即 xi 是外生性变量),Cov(xi,ξi)=0

(6)对于多元还需要:不存在完全的多重共线性

1.1 其中,高斯-马尔可夫条件是什么?

该条件即上述的假定(3),源于高斯-马尔可夫定理,首先说这个定理。

【高斯-马尔可夫定理】在给定经典线性回归的假定下,回归系数的最佳线性无偏估计量就是最小二乘估计(OLS)量。称此时的 OLS 量满足BLUE(Best Linear Unbiased Estimators 最佳线性无偏估计)性质,最佳指方差最小(即估计量的有效性)。

这个定理有什么用?它给我们提供了一个特定条件下寻找BLUE估计量的方法,也就是说如果一个线性回归方程满足某些假定,此时的最小二乘估计量就是最佳线性无偏估计量,不可能找到一个更优的线性无偏估计量,因为这已经是方差最小的情况了。所以我们喜欢研究那些满足该定理中的假定的问题。

这个定理中的内容是什么红色标注内容)?

  假设(线性方程

  Y_i=\beta_0+\beta_1 x_i+\varepsilon_i。(i = 1……n࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值