回归分析-线性回归-检验-模型

本文详细介绍了线性回归模型的检验过程,包括正态性、独立性、线性关系、同方差性、多重共线性及异常值的检查。通过对美国各州数据的分析,展示了如何诊断并解决模型问题,如通过残差图、Durbin-Watson检验等方法评估误差独立性,以及如何通过VIF值识别和处理多重共线性。此外,还探讨了异常值的识别与处理,以及模型改进措施,如变量变换和选择。
摘要由CSDN通过智能技术生成

OLS:最小二乘法

  • 通过预测变量的加权和来预测量化的因变量,其中权重是通过数据估计而得的参数
    数据特征:
     正态性 对于固定的自变量值,因变量值成正态分布。
     独立性 Yi值之间相互独立。
     线性 因变量与自变量之间为线性相关。
     同方差性 因变量的方差不随自变量的水平不同而变化。也可称作不变方差

  • 回归模型包含一个因变量和一个自变量时,我们称为简单线性回归

  • 当只有一个预测变量,但同时包含变量的幂(比如,X、X 2、X 3)时,我们称之为多项式回归

  • 当有不止一个预测变量时,则称为多元线性回归

简单线性回归

fit <- lm(weight ~ height, data = women)
summary(fit)
women$weight
fitted(fit)
residuals(fit)

plot(women$height, women$weight, main = "Women Age 30-39", xlab = "Height (in inches)", ylab = "Weight (in pounds)")
abline(fit)

在这里插入图片描述

多项式回归

fit2 <- lm(weight ~ height + I(height^2), data = women)
summary(fit2)

plot(women$height, women$weight, main = "Women Age 30-39", 
    xlab = "Height (in inches)", ylab = "Weight (in lbs)")
lines(women$height, fitted(fit2))

在这里插入图片描述
线性模型: Y ∼ log ⁡ ( x 1 ) + sin ⁡ ( x 2 ) Y \sim \log (x_1)+\sin (x_2) Ylog(x1)+sin(x2)
一般来说,n次多项式生成一个n-1个弯曲的曲线

install.packages("carData")
library(carData)
library(car)
scatterplot(weight ~ height, data = women, spread = FALSE, 
    lty.smooth = 2, pch = 19, main = "Women Age 30-39", xlab = "Height (inches)", 
    ylab = "Weight (lbs.)")

在这里插入图片描述
spread=FALSE选项删除了残差正负均方根在平滑曲线上的展开和非对称信息。lty.smooth=2选项设置loess拟合曲线为虚线。pch=19选项设置点为实心圆(默认为空心圆)。

states <- as.data.frame(state.x77[, c("Murder", "Populati
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值