一、项目背景
用户消费行为贯穿于电商、医疗、物流等行业,数据分析中对于用户消费行为分析的占比是很大的,除了产品质量以外,首要任务就是分析用户的消费行为,目的是有效地、有针对性地加大营销力度,进而提升企业的营业额。本项目基于某电商21年12个月的用户消费数据,主要进行了用户整体和个体分析、消费时间分析、用户分层模型、复购率和回购率、生命周期和购买周期等的分析,项目中采用了电商用户消费行为分析的通用数据分析方法。
二、数据信息
数据来源:数据集来自和鲸社区。本数据集为某电商用户消费数据,提供了该平台21年12个月10W+条客户消费记录。
三、分析框架
四、结论先行
结论总结
1、整体趋势:销量和销售额在21年5-7月相对较高,然后下降,原因可能跟这段时间平台大力促销或与商品的季节属性有关;
2、用户个体特征:前6万名用户贡献了一半的消费金额,而后面1万多名用户贡献了剩余一半的金额,符合电商行业的二八原则;
3、用户的消费周期: 平均购买周期为116天,绝大多数用户的消费周期低于150天,用户消费周期在200天以上(不积极用户)占少数;用户购买周期的人数随着时间的增长而减少;对于不积极用户可以在消费后3天内通过短信回访赠送优惠券的方式,增大消费频率;
4、用户的生命周期:有二次以上消费的用户,其平均生命周期为127天。应对用户生命周期在100天以内的用户进行引导,促进其再次消费并形成消费习惯,延长其生命周期;在生命周期在100-400天的用户,也要根据其特点推出有针对性的营销活动,引导其持续消费;
5、新老客户的复购率和回购率均不高,且回购率大于复购率,但老客户的复购率和回购率大于新客户,需要营销策略积极引导再次消费形成消费习惯;
6、用户质量:用户个体消费有一定的规律性,反应了二八法则,即消费排名前20%的用户贡献了80%的消费额。所以,需注重高质量用户的运营,这些高质量客户都是“会员”类型,可专门为会员优化购物体验,如设置专线接听、提供折扣优惠等差异化运营措施。
数据分析及可视化
1、用户整体消费趋势分析
统计每月的产品购买数量,产品消费金额,产品消费次数,产品消费人数
发现:
1、每月的产品购买数量、消费金额、消费次数、消费人数均呈现整体上升的趋势;
2、前四个月销量较低,从第四个月开始销量迅速攀升,7-10月销量下缓,10月后继续上升,总体呈现上升趋势,推测从4月开始,商家加大了促销力度,或者是由于产品属性与季节性需求有关。
2、用户个体消费分析
2.1 用户累计消费金额占比(用户的贡献度)
发现:
1、前6万名用户贡献了一半的消费金额,而后面1万多名用户贡献了剩余一半的金额,符合电商行业的二八原则。
3、用户消费行为
3.1 首购时间与最后一次购买时间
发现:
1、首次购买的用户量从3月开始呈上升趋势,在7月开始逐步回落,猜测原因:公司产品的推广力度或价格的改变。