数据分析案例——电商平台数据集

数据来源于阿里云天池,为淘宝app平台在2014年11月18日-12月18日的数据。

数据处理

导入相关的包,设置seaborn的绘图风格:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

使用open看一下数据形式:

filename = 'tianchi_mobile_recommend_train_user.csv'
with open(filename) as f:
    for _ in range(5):
        line = f.readline()
        line.strip()
        print(line)
user_id,item_id,behavior_type,user_geohash,item_category,time

98047837,232431562,1,,4245,2014-12-06 02

97726136,383583590,1,,5894,2014-12-09 20

98607707,64749712,1,,2883,2014-12-18 11

98662432,320593836,1,96nn52n,6562,2014-12-06 10

使用read_csv读取数据:

data = pd.read_csv(filename, sep=',')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12256906 entries, 0 to 12256905
Data columns (total 6 columns):
 #   Column         Dtype 
---  ------         ----- 
 0   user_id        int64 
 1   item_id        int64 
 2   behavior_type  int64 
 3   user_geohash   object
 4   item_category  int64 
 5   time           object
dtypes: int64(4), object(2)
memory usage: 561.1+ MB
data.head()

在这里插入图片描述
behavior_type的值替换为对应的行为:

# 将behavior列改变
behavior_mapping = {
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值