fish-speech语音大模型本地部署

fish-speech模型

先说下fish-speech模型吧,可以先看下官网。如下:
fish-speech官网
这就是一个模型,可以根据一个样例声音,构建出自己需要的声音。其实,这个还是有很多用途的;商业的配音太多了,就像喜马拉雅的配音师,也是不少的;再说个我们常见的,像一些短视频平台的配音,也可以用它来生成。这类应用还是蛮多的。应用场景就不多说了,来看下具体怎么部署。

下载

第一步,去git下载。然后编译,我在windows上部署的。可以简单看下,如下:
首先执行如下命令:
install_env.bat
这个会有一些时间。

编译

其次,这个阶段,需要下载一些文件,比如llvm,msvc,visual studio,cuda。当然,这些我是之前都安装过的。所以就省略了。具体,看自己的需要。

部署

最后,执行start.bat。本地会出现训练推理界面;如下:
在这里插入图片描述
如果不需要,可以修改start.bat,如下图所示,
在这里插入图片描述
然后,执行,即可出现生成语音的界面;如下:
在这里插入图片描述
看下整个工程的内容,如下:
在这里插入图片描述

小结

好了,就写到这里了。本篇主要详细的写了怎么本地编译,部署fish-speech;如果第一次,难免中间会出现很多问题,一点一点解决。最终能部署成功的。其实,可以看到,项目中有很多和ffmpeg相关的内容,如果对ffmpeg感兴趣,可以去学习学习。OK,结束。有问题,可以和我沟通,一起聊聊。

### 部署Fish-Speech项目 为了在Mac操作系统上成功部署和配置`fish-speech`项目,需遵循一系列特定的操作指南。虽然具体的安装指令可能因项目的不同版本而有所变化,但通常涉及环境准备、依赖项安装以及运行必要的脚本。 #### 准备工作 确保已安装Python解释器及其包管理工具pip。对于语音处理任务而言,推荐使用虚拟环境来隔离项目所需的库文件[^2]: ```bash python3 -m venv fish_speech_venv source fish_speech_venv/bin/activate ``` 接着更新pip并安装其他必需的开发工具如Git等。 #### 安装依赖 克隆`fish-speech`仓库到本地机器,并进入该项目目录下执行如下命令以获取所有外部依赖: ```bash git clone https://github.com/path_to_fish_speech.git cd path_to_fish_speech pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` 这里假设`requirements.txt`包含了启动服务所需的所有第三方模块列表。 #### 运行应用程序 根据提供的信息,在完成上述准备工作之后,可以通过指定输入音频路径、输出文本保存位置以及其他参数(例如语言模型精度)来调用ASR(自动语音识别)功能: ```bash python ./tools/asr/fasterwhisper_asr.py -i /path/to/input/audio.wav -o /path/to/output/transcription.txt -l zh -p fp16 ``` 请注意,由于缺乏进度指示符的支持,此过程中的任何GPU加速操作都可能导致不可预见的时间延迟。 #### 测试与验证 一旦服务器端正常运作,建议上传一段测试音轨并通过API接口请求转录结果,以此确认整个流程无误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值