摘要:
态势理解(SU)需要同时拥有洞察力(准确感知现有情况的能力)和预见力(预测现有情况在未来如何发展的能力)。SU涉及到信息融合以及模型表示和推理。通常,在信息融合的过程中必须利用异构数据源:包括硬数据和软数据。在联合的情况下,还要分配数据和处理资源,并对信息共享加以限制。在SU过程中,经常需要人参与到循环的过程中,提供关键的输入和指导,并以一种适当透明的方式来解释输出:系统不应该是“黑匣子”。在本文中,我们从融合、时间、分布和人员需求等方面描述了联合态势理解(CSU)问题。目前,人们对处理硬数据和软数据的深度学习(DL)方法非常感兴趣。我们分析了与CSU的这些要求相关的DL的最新技术,并分析了目前存在相当大的潜力和关键性差距的领域。
一、介 绍
在复杂的多元领域(例如空中交通管制,船舶导航,紧急响应,军事指挥与控制等)中进行决策,通常在很大程度上取决于决策者的态势理解。通常,这种理解概念被定义为“对单位的态势进行分析和判断,确定所存在的因素之间的关系,并对任务完成的威胁,任务完成的机会和双方存在的差距进行分析而得出结论”[1]。这与Endsley广泛使用的模型中的二级态势感知(SA)相对应,如图1所示。事实上,Endsley 模型为我们提供了一个操作性定义的理解——对时空环境下元素的感知(1级),其次是在特定上下文中进行理解(2级),最后为通过时间或者其他事件的变化来预测未来事件的能力(3级)。
在文本工作中,我们探讨了在特定的军事联合背景下实现态势理解所需的功能模块,这个联合背景的特点是所有的智能体组成联盟为实现共同的任务目标而协同工作。这些智能体同时也是独立管理区域的一部分,不同的管理区域确定了其本地数据收集和数据共享策略。
受到深度学习技术在医疗保健,刑事司法系统,财务以及军事决策等领域的广泛使用的启发,我们首先通过图1所示的操作定义开始,即在态势理解的不同阶段之间进行映射并使用分布式学习框架的组件进行态势的理解(由Endsley模型提供)。首先,为了获得对环境的感知,应该训练分布式模型以识别在不同时空粒度级别上发生的事件,这些事件共同记录在各种智能体收集的时间序列数据中,智能体可以通过联合上下文进一步引入局部约束,以调节智能体之间的信息流,从而增加额外的复杂性和复杂性。其次,为了帮助理解,该模型不可以是黑匣子,而必须是可解释的,并且其输出可以使用人类能理解的语言来解释。最后,模型本身应该具有生成能力,能够准确地预测到将来的状态。
图2显示了联合网络的多层视图。第1层描绘了不同的智能体(蓝色,绿色和黄色区域),每个智能体都在数据共享策略的约束下,在本地收集多模态数据,并与其他智能体合作。第2层显示了从人和机器方面获取的信息来实现对情况的理解的过程。
联合态势理解(CSU):基于以上的描述,联合态势理解可以分解为以下几个部分:
(1)分布式学习算法:联合网络的存在是建立在整体大于部分之和的前提下的。在环境的共享模型中,学习使用来自所有智能体的组合信息比单个信息更重要。总而言之,为了训练共享模型并实现上述目标,所使用的学习算法应该:1)能够根据连接各个智能体的网络拓扑结构的可变性进行调整;2)对智能体提供的训练数据的可靠性具有敏感性;3.)解释智能体所提供信息的不同粒度(例如原始数据或模型参数);4)满足智能体的隐私要求。
(2)多时间尺度的学习:通常情况下,联合网络会用来监视特定地理区域中感兴趣的事件。但是,被监测事件的周期可能不同。共享模型应该能够使用来自智能体的集体信息来学习在不同时间尺度上准确表达自己的事件。例如,在一个特定的路段上,工作日的交通量(或拥堵程度)可能完全取决于当天的时间。不过,周末的拥堵程度可能取决于附近一场体育赛事的日程安排。因此,阻塞应是在不同的时间尺度上发生的两个不同事件的预测结果。
(3)模型的可解释性和可说明性:这些属性指的是模型与人类之间的双向信息流。虽然基于深度学习的模型是由神经科学对人类大脑工作的理解所推动的,但两者之间的关键区别是人类的“思考能力”。通俗的说,正是这种思考能力使人类不仅可以做出预测,而且可以通过一系列逻辑上一致且易于理解的选择进行预测,从而使预测合理化。反过来,这种能力又使决策者可以隐含或显式地将置信度与预测结果相关联,并用来决定下一步的举措。深度学习模型中与人类思维过程相对应的部分通常称为可解释性,这种解释预测的能力可以使有意义的信息从模型流向人类。
我们把从人类到模型的信息流称为可说明性。与我们希望模型从训练集中的样本中去学习其对应类别的特征相反,可说明性意味着将不属于训练数据的一部分的先验信息添加到模型中。可说明的信息通常基于人的先验知识,而不仅仅局限于训练数据。
我们的贡献:在本文中,我们做了两个贡献。第一,我们将联合态势理解问题转