辩证法的本质及应用实例:微积分新诠释

[摘 要]首先对存在争议的辩证逻辑及其与传统逻辑的关系问题进行了讨论。提出多维视野解决辩证逻辑的本质问题。用微积分新诠释为例,印证了马克思首先提出的用辩证法看待微积分问题的观点是完全正确的,在当年那个极限法大行其道的年代极具前瞻性。微积分问题的彻底解决,无疑为辩证法、辩证逻辑提供了最生动的应用实例。

[关键词]辩证逻辑 辩证法 微积分 导数 贝克莱悖论 极限 无穷小 除法 多维视野

The nature and application of dialectics: new interpretation of calculus

Shen Wei_guo

The Research Institute of Infurmation.Intelligence and Logical,Northwestern Polytechnical Univversity,Xi’an 710072,China

Abstract:The dialectical logic of controversial and its relationship with traditional logic problem was discussed to solve multidimensional view dialectical logic nature of the problem A new annotation with calculus, for example, proved Marx first put forward using dialectical point of view of calculus is entirely correct, in that era is also very avant-garde calculus problem completely solved, undoubtedly provides a realistic dialectics dialectical logic application example

Keywords:

ialectic logic dialectic calculus derivative Berkeley paradox limit infinitesimal division multidimensional degree

一、辩证思维、辩证逻辑的本质、目的及其与传统逻辑的异同

辩证法的精髓,主要是对立统一、量变质变、否定之否定等内容。它给人的正面印象,是灵活、丰富及哲理性;但负面的印象,是不严格、模糊、歧义、自相矛盾等等。辩证法通常被认为是与机械观对立的,而逻辑、特别是数理逻辑本质上就是研究推理等人类思维活动的确定规律的,它实际上离不开一系列的机械步骤及规则。因此,辩证与逻辑,是一对含有对立意味的概念。这也是一些学者明里暗里反对将辩证法引入逻辑研究的内在原因。那么,我们为什么还要有辩证逻辑?逻辑是可辩证的吗?或则,辩证法是可以逻辑化的吗?我们说,辩证法之所以会产生,是由于单一的概念、词汇、命题对于复杂的客观事物的信息量不够。相对于客观实际而言,这些命题实际并没有界定清楚,从而要想客观地反映现实世界,必须对单一概念、词汇、命题进行扩充、说明、界定,也就是要对单一命题施以限制条件或者给出其存在的条件,形成复合命题,而这些条件在只有单一命题时都是隐含的。特别地,一些单一的矛盾命题(如好、坏等),或虽不矛盾、但含义相反的命题(如有优点、有缺点等),在加进条件命题变成复合命题后,完全可以不再矛盾。此类命题,我们可以称之为辩证命题或复合辩证命题。辩证逻辑,显然就是研究这些命题的。因此,依笔者之见,辩证法的任务,可以视之为是将某种原因(认识有限,精炼语言,语言习惯,看问题简单化)隐藏于单一命题,特别是相互矛盾的单一命题中的条件找出来,或者将原本并不矛盾的命题,在加进相关条件后,变成矛盾的。而辩证逻辑,也就应该是研究这些命题间的推理的。而传统逻辑,一般是研究单一命题的,也就是始终条件一致的命题。这里,相互矛盾的单一命题,就是矛盾的,没有可能将其融和进一个不矛盾的复合命题中,正像我们在现实生活中经常做的那样。显然,这就会遗漏很多我们始终会涉及到的命题,它无论对我们的语言元素集还是客观事物而言,都是不完备的。现举一些例子予以说明:

1、由于事物的相对性,比如上、下;大、小;高、矮;胖、瘦等这些概念命题,在作为单一命题时是相互矛盾的(这里“小”可非严格地理解成“不大”,等等)。但如果加上限制条件“相对于某人而言”或“以某人为基准”等命题,则这些复合命题不再矛盾。相反,如果二人同高,但加进条件“某一人站在凳子上”,则原本同高的二人就不同高了。这里的“高度”,已经不是指的“身体本身的高度”了。

2、纸老虎、真老虎(非纸老虎)。表观是矛盾命题。但如果我们以“得不到人民支持”为条件去定义纸老虎,然后我们又以“武器好”去定义真老虎,我们就可以说帝国主义又是纸老虎,又是真老虎,它为了精炼语言,隐含掉了复合条件命题。辩证逻辑的命题应该是确定的,并不是一些学者认为的是“模糊”的。比如在此例中,“老虎”又是“真老虎”,又是“纸老虎”,既“真”又“纸”,都是实实在在的。而不是“也许真”、“也许纸”。不能确定是否“真”或者“纸”。因此,辩证逻辑本质上并不是模糊逻辑,只不过二者形式上有些相似罢了。

3、平行线又可相交又不可相交。有辩证意味,为矛盾命题。但在欧氏几何公理下,不可相交;而在非欧几何公理下,可以相交。这实际是一个对平行线的定义问题。在欧氏几何中,不相交的是平行线;在非欧几何中,相交的是平行线。这里,“公理”即“条件”,不同的条件、公理、前提、原则,可得到不同甚至表面矛盾的命题(指隐含这些前提条件命题时)。可见,命题如果太过简短(单一命题),则可能不能涵盖客观上与此命题有关的所有丰富内容。

辩证逻辑的任务,笔者认为,主要有两方面:

1、假设在条件命题a下我们可以得到命题(结论)A,而在条件命题b下我们可以得到命题(结论)非A。传统逻辑的目的就是得到A,至于a是否参与推理或者仅是隐含的并不重要。如果在传统逻辑中推出了非A,那就意味着A是假命题;如果在某前提下同时推出了A和非A,则按排中律,由反证法说明推理的前提有问题。传统逻辑认为上述结论是当然的、唯一正确的。特别是a、b条件被隐含或不明显时。辩证逻辑下,事情不能到此为止,它的任务,是找出往往是隐含的、不明显的、甚至是隐藏很深的(这也正是“辩证思想”往往非常高深、非常困难的原因)条件a、b,使原先是矛盾的命题A和非A,在加上限制条件的a和b后,不再是矛盾的。当然,如果两个条件之一非常明显,我们的任务就是找出另一个隐含的。由于加上限制条件a、b命题后,等于是(等价于)改变了A或非A的定义(或直接当作复合命题看),因此实质上它们不再是矛盾命题,或者说,它们此时只是表观矛盾的。此一辩证逻辑推理的目的,是在看似绝对的结论中,找出相对性。也就是原先看似绝对是对的东西,在什么条件下可以是错的,或反之。当然,这一切都与不同的前提条件密切关联。

2、在传统逻辑中,如果一个系统最终得到了矛盾命题,说明此系统有问题,其前提必须被抛弃。这是排中律所要求的。但在考虑辩证复合命题后,辩证逻辑中完全可以主动地直接从一个矛盾命题出发,去找出不同的适用条件。也就是上面的a和b,当然也可以是a或者b。如此一来,原先在传统逻辑中相互矛盾的命题,变成了复合相对命题,也就是辩证命题。等价地,等于是相对传统逻辑情况改变了原矛盾命题的定义,于是,该命题在辩证逻辑中不再是矛盾命题了。只不过如果我们图省事,省略了其条件(隐含条件)时,会有貌似矛盾的提法出现。比如“帝国主义又是纸老虎,又是真老虎”,“某人又是好人,又是坏人”等等。但这时立论成立(即命题实际不矛盾)的基础,是被隐含的条件、前提的存在。我们看到,这种辩证逻辑的推理目的,是从原先看似错误或就是错误的东西中,找出在什么条件下,结论可以是或变成正确的。

总之,这种表观的“矛盾性”即辩证矛盾实际是康德的“二律背反”意义的“矛盾”。它由不同的前提所产生。而辩证法、辩证思维及辩证逻辑的目的,无非是找出看似简单的命题(非此即彼)及其反映的事物间的复杂性。因此,所谓辩证逻辑也必然地是研究并符合辩证法式语言的复合命题的逻辑。它的目的,不是、也不应是、也不可能是使逻辑规则本身辩证化,搞出一套新的逻辑规则,用以推出辩证命题。辩证逻辑的本质及其基础,仍是传统逻辑,但用于处理、研究符合辩证法式的较复杂的、有时甚至是表观“矛盾”的辩证复合命题,以区别于传统的单一命题。我们说,复合命题早已就进入了传统逻辑的研究中,比如对“谓词”的研究,无论形式逻辑还是数理逻辑都在做,辩证逻辑所要处理的,是一类特殊的辩证复合命题,它是与辩证法、辩证思维有关的复合命题。我们可以举一个例子来说明这一问题:古希腊之后的2000余年间,人们在几何上采取的是欧氏几何观,认为它是绝对的。这显然符合传统逻辑。突然有一天,有人看出,如果条件、前提(也就是公理)不同,我们完全可以有看似与欧氏几何矛盾的非欧几何,这种矛盾只是表观的,这就是辩证思维,符合辩证逻辑。但一旦我们意识到这一点,无论欧氏还是非欧几何,其内部的推理规则都必须符合传统逻辑,只是前提(公理)本身不同罢了。以往可能有人对辩证逻辑有误解,认为它允许矛盾命题出现,是不可接受的,由上文分析可见,此种顾虑如果有,也是不必要的。换言之,所谓“辩证矛盾”,实际是个“假矛盾”,是命题、词汇过于简略,未能反映客观事物的全貌及复杂性所致。也就是说,如果逻辑中的真矛盾,其命题必假;而一个“假矛盾”,即实质上的“不矛盾”,其命题则为真。这一结论,无论传统逻辑还是辩证逻辑,都是应该遵守的。

本文中提出的方案,既坚持了辩证性,又坚持了传统的排中律、矛盾律,而不必将其“弱化”。其本质,是如果遇到表观矛盾,就找出其复合条件,变其为不矛盾,而不是一味在系统中“容纳矛盾”,这样会使系统过于复杂而无所适从。总之,应尽可能用最简单的方法去处理新事物。将新事物归结到传统,如果能够很好地解决问题,又何乐而不为呢?

顺便谈一下,辩证逻辑既是专门研究复合命题的(条件性复合命题)的逻辑,就可以借用数学概念,用扩大“维数”来处理。如“否定之否定”,事物发展“螺旋上升”等等辩证法中常常涉及的概念、命题,都可以在三维空间中得到描述(所谓螺旋线只能在三维空间存在)。这为用数理逻辑的方法处理辩证逻辑问题打下了基础。反之,就以数学概念为例,只有在多维(比如就是二维、三维)空间中才能确切地被描述的事物,如果硬要投射到一维空间,肯定会丢失信息、描述不清甚至产生矛盾。没有二维以上的多维空间,我们甚至无法形象、直观、精确地刻画一个函数关系(既然是“关系”,就必然起码涉及两个方面,当然只能用与之对应的二维以上的空间来描述,否则需要两个独立的一维空间来分别描述自变量与因变量。即使如此,本质上也还是个二维空间,不过分别表示、不画在一起而已)。这也就是数学理论为什么必须从一维空间扩充到多维的根本原因。这绝对不是可有可无的,而是事物复杂性本身以及精确描述这种复杂性所必需的。又比如,数学中把实数空间扩展到复数空间,也是如此。绝对不是故弄玄虚的噱头而已。特别应该引起注意的是,在复数空间中很自然的事,在单纯实数空间中就是不可思议的,甚至矛盾的。比如“虚数”的出现、一个数的平方可以是负数等等,这些在单纯实数空间都是不可想象而且矛盾的,因此是不能被允许的。这与辩证法以及辩证逻辑之于形式逻辑、数理逻辑间的关系非常相似,而且事实上它们也是相关的。现在早已经没有人再以实数空间中出现的矛盾来质疑、拒绝复数空间了,但知道数学历史的人都知道,当年可不是这样的。很长时间中很多人是反对、排斥复数这种东西的。复数的出现,是一场革命,而且是必由的。一句话:多维、复数空间以致与之一致、类似的辩证法、辩证逻辑的出现,是对客观事物复杂性进行精确描述的要求使然,这与一些人对辩证法、辩证逻辑的一般印象截然不同。很多人总以为(而且以往也确实不无理由)辩证法以致辩证逻辑是模糊的、含混的甚至是自相矛盾的。笔者认为,这是没有用简单、明确的语言对辩证法、辩证逻辑的多维、多视角本质进行定义、描述所致,也就是没有用辩证的观点,来看待辩证法、辩证思维、辩证逻辑本身。尽管人们在实际进行“辩证思维”时往往正是这么去做的(尽管很多人是不自觉的,包括那些明确反对、质疑辩证法的人)。也就是,当任何人一旦用多维视角去看问题时,不自觉地已经在进行某种程度的“辩证思维”了。当然,如果我们缺乏一个精确定义、描述,人们在应用辩证思维、辩证法于客观事物时,就可能出错。比如把一个明明是处于同一个维度中的矛盾事物,硬说成是成立的,并认为其符合辩证法。这无疑构成了对辩证法的滥觞。以往,这也不能不说是很多人反对、质疑辩证法,对辩证法敬而远之或束之高阁的根本原因。但是,一个工具某人用的不好,与工具何干?多维数学、复变函数没有学好、用好,就要抛弃它们吗?

总之,既然逻辑中可以有一阶逻辑、二阶逻辑等等,那么,同理,也就完全可以有一维逻辑、二维逻辑,以致多维逻辑。参照数学范畴的概念,也是说的通的。也就是说,现有形式逻辑甚至数理逻辑,就是一维逻辑范畴的(可以有一阶、二阶之分),而所谓辩证逻辑,其本质无非就是多维(二维以上)逻辑(包含形式逻辑和数理逻辑)。这既是辩证逻辑的规范化、形式化、定量化,也是现有形式逻辑、数理逻辑的扩充和发展。同时很自然地,消除了二者间的人为鸿沟,彻底地厘清了二者间的相互关系。

二,辩证视野下的微积分新诠释

1、除法、比式、消去运算的实质

之所以要着重澄清这些相关概念,是因为牛顿、莱布尼兹在求导过程中,首先就作了除法。

除法:某数或量,被分成若干分,每一份是多少。

比式:最终得到的数值或变量,实际是折合成分母为1时的分子值。比如物理上“速度”这个概念,就是“单位时间物体所运动的距离”,而“单位数值”就是“1”。因此速度的数值可以不写分母上的“1”,但反映真实关系的物理“量纲”,却还是一个“比式”形式,也就是“距离/单位时间”。这是掩盖不了的。

消去:实际就是做除法和求比式的值。也可以说前二者是通过消去操作来具体实现。结果当然分母被“消去”的部分应该就是“1”。消去,就是分子、分母中的相同部分都为“1”。但由于1乘以任何数和变量其数值不变,因此通常可以不写。但不写不得于比式的关系不在了。

以往,这个“1”被省略了。原因当然是有1没1,数值不变。删繁就简。但严格而言,就信息的完全性而言,这个分母上的“1”本身,是不应该“被消去”的。因为显然,无论是除法中的“每一个”,还是求比式中的“单位数值”,消去操作中的分子、分母中共同的部分变为1,都离不开这个“1”。在只要求数值的绝大多数情况下,这个“1”当然可以而且应当舍弃,但在微积分求导这里,偏偏这么做是不可以的。

2、导数

(1)、 导数定义(第一定义):曲线上某点的切线斜率。

比如物理上的瞬时速度概念,应该定义成:物体受力做变速或曲线运动,在某瞬时该力突然解除,物体做匀速直线运动时的速度。

由于以上定义,只要能够求出曲线的切线斜率的,都可以。因此求导方法不拘于一种牛顿、莱布尼兹法。但由于该法非常有效且影响广泛,因此值得详察。

注意,以上导数的定义,与传统牛、莱法或极限法(标准分析)的区别:虽然在数值上相等,但传统定义需要会产生贝克莱悖论的区间无穷小或并不真的存在的极限。而这里的定义完全没有无穷小和极限的任何表述。其实它就是宏观量。当然不排斥无穷小,但其不是必要条件。

(2)、牛顿、莱布尼兹求导法的实质

设有曲线在横坐标x点的增量(坐标差)函数△y=f(x,△x),其中△x为曲线上二点(x及x+△x)间的横坐标(自变量)差或曰增量。现将其写成过此二点的、并且仅取此二交点值的该曲线的割线方程形式为△y=K(x,△x)·△x。这里的K为该割线的斜率,它同样是x及△x的函数。显然,如果割线上的点,并不局限于它与曲线的交点。因此不失一般性,我们令该割线方程中不包括在斜率K中的△x为△g,其为割线上任何二点(不局限于与曲线的交点)的坐标差或增量。相应地,△y也变为△h,也就可得到割线上的不拘于与曲线的交点的一般方程△h=K(x,△x)·△g。显然,当该割线与曲线的二交点合为一点时,也就是当△x=0(特别强调,根本无须什么△x→0)时,该割线变为切线。由此,我们可以得到导数的一般定义:

△h/△g(当△x=0,△g=1时)=K(x,△x)·△g/△g=K(x,0)·1/1=K(x,0)

..........................(1)

几何意义上,也就是曲线的切线斜率。代数意义上,就是该曲线与某一直线联立求得重根解时该直线方程中自变量的系数,即斜率。显然,此定义下不存在贝克莱悖论,也不再需要什么无穷小、极限概念。而且实际与所谓“第一代微积分”的牛顿、莱布尼兹求导方法相一致,只不过把他们无意中做除法后得到的结果彻底解释清楚了。换言之,笔者所做的,只是彻底诠释了牛顿、莱布尼兹求导法,并给出相应的导数定义,使其今后可以放心大胆地使用而已。注意,当曲线与割线的两个交点合二为一时(△x=0时),作为导数第一定义的1式最左边的比式的分母△g=1而不是0,因此不再涉及分母为0所产生的一切问题。这是由于变量除法所要求的△g/△g=1/1=1,而如果把导数直接定义成曲线函数与其自变量的增量比△y/△x,则无论△x=0还是△x→0,显然函数中的所有自变量△x均为0,因此会产生分母为0(也即0/0)的问题(贝克莱悖论)。

很重要的一点,设x1 为上述x及x+△x之间的一点,可令

K(x,△x)=K(x1 ,0)

.......................................................(2)

等式的左边为曲线两点间的割线斜率,等式右边为此两点间的一点x1的切线斜率(也就是传统上的该点的导数)。由于二者数值相等(平行线斜率相等。实际上,这就是著名的中值定理),因此该曲线在x1 点的导数(切线斜率),完全可以也定义成过曲线横坐标x、x+△x两点的割线斜率(可看成是导数的第二定义),在物理上,就是某时段的“平均速度”。因此,结合导数的两个定义可知,导数在物理上就是速度——无论是瞬时速度还是平均速度。而由2式,x、△x、x1 三者知道两个,即可求出第三个。于是,导数由原先的只涉及一点可以扩展成涉及两点。

由1式可以看出,极限法(标准分析、所谓第二代微积分)求导所倚赖的曲线函数增量△y与其自变量增量△x之比在0点的极限根本就不可能存在:如不做除法,分子、分母中的△x→0都为0进而得到0/0。而做除法(前提条件是:△x≠0以及不能取△x→0时的“极限”,因为此时其极限值也是0/0,也就是通常所说的极限不存在或不存在有意义的极限值。而此点为以往所完全忽视),由1式可知,此时只有系数K中的△x=0,而分母中的变量无论写成什么,都始终等于“1”。因此不存在趋于0或等于0的问题(实际是△x→1或△x=1)。也就不能把它的运算结果看成是曲线函数的自变量△x→0(而又不等于0)的结果。当做了除法消去了分母上的自变量△x后,此时就算再有△x→0,也不是最初的极限式等式左边的△y/△x在△x=0点的极限了,而是消去了分母上的△x(也就是实际是分母上的△x=1)后的那个实际上是一个全新的函数△y’(即使无视做除法意味着分母为1这一事实,也应如此。而前文已述,它实际应是分母为1的△y’/1)在△x→0时的极限值。因此,传统上的极限法求导不能成立,能成立的倒是经过重新诠释后的牛顿、莱布尼兹的所谓第一代微积分。

最后,特别强调一下:既然我们已经知道导数无非就是曲线的切线斜率,而一条直线的斜率就是其线性表达式中一个自变量的系数,同时这个系数本身自然也可以是自变量的函数,而其中出现的自变量等于0时的该系数就是切线的斜率。既然如此,我们就完全可以不从导数的定义式(是个比式,有分母且分母为自变量)出发去求这个导数,而是不必在式子中除以自变量(再无分母上那个被认为产生麻烦的自变量了),可直接从与曲线相交的割线令其系数中自变量等于0而求出导数。这是最简单、直观的方法。以二次曲线为例说明如下:

都知道二次曲线的增量比值函数最终为∆y/∆x=2x·∆x+∆x2=(2x+∆x)·∆x,等式右边可以看成是与该曲线相关的割线式,其系数(斜率)就是K(∆x)=2x+∆x,当其中的∆x=0时即切线斜率[根本不必(当然也可以)△x→0]。如此,完全没有了分母上的自变量∆x(当然也就不存在其是否为0的问题),也不必管系数以外的那个自变量即(2x+∆x)·∆x中最右边的那个∆x此时具体等于什么,是否为0还是为1等等。更进一步,按导数的第二定义,甚至连切线都不必求,割线的斜率就是导数的第二定义,数值上等于“中值”的切线斜率。具体请参照前文。

(3)、三角函数的求导问题

众所周知,通常以为求三角函数的导数的关键,是求(sinθ)/θ在θ→0时的极限[3]。显然我们有cosθ˂(sinθ)/θ˂1/cosθ,当θ→0时,该式两边都以1为极限,因此通常以为由所谓的“三明治定理”(夹逼定理),就可求出(sinθ)/θ在θ→0时的极限为1[3]。但是,这一看似天衣无缝的“证明”,理由却并不充分与完备。因为:我们将上式各项乘以θ,得到θ·cosθ˂sinθ˂θ/cosθ,当θ→0(或θ=0)时,式中各项都为0。如果将式中各项除以θ但并不消去分母分子上的θ,也就是在各项的分母上放上个θ(这当然可以,没有哪一条数学公理规定只要是分式就非要分子分母相消以去除分母不可),则可得到(cosθ)·θ/θ˂(sinθ)/θ˂(1/cosθ)·θ/θ。显然,当θ→0(或θ=0)时,式中各项都为0/0。而既然上式的中项(sinθ)/θ的分母上有个θ,没有消去,那么,在数值不变的情况下,不等式两边的两项分母上当然也可以有θ,况且与中项保持形式的一致当然是更严格的。否则有(sinθ)/θ没有消去分母上的θ,不等式两边明明也可以有个θ,但却被消去了,证明的条件并不一致,证明过程就不严格,结论就会错。因此,要得到原先的结果,我们只能认定不等式两边通过做除法消去了分子分母上的θ,如前文的论证,这意味着有θ/θ=1/1。而sinθ,我们完全可以写成θ的线性函数的形式,即sinθ=K(θ)·θ,其中K(θ)为该线性函数的系数(当然也就是斜率),其本身也是θ的函数。于是,在不等式各项做了除法消去分子分母上的θ后,严格讲我们实际有(cosθ)·1/1˂K(θ)·1/1˂(1/cosθ)·1/1。式中各项可以看成是自变量的增量(或就把增量当成自变量)恒为1的线性函数的增量比值函数,其中各项1/1左边的cosθ、K(θ)、1/cosθ,均为线性函数的系数,也就是斜率。它们显然都是θ的函数。但这个θ是系数(斜率)中的,只决定系数(斜率)的数值,与该线性式表示的直线上的两点没有任何关系(前已述及,此时直线上的两点间的自变量也就是横坐标的增量恒为1)。显然,当θ→0甚至就是θ=0时,由三明治定理,可以得到K(0)=1。但这里需要给以极大的注意:虽然表面上看似有K(θ)=(sinθ)/θ,但这实际上只对θ≠0(甚至也不存在θ→0)时才成立。因为无论θ=0还是θ→0时,(sinθ)/θ都只能是0/0而不是1。而我们由三明治定理实际求得的,是做了除法时θ/θ=1/1后K(0)=1,而不是未做确实的除法(指消去分子分母中各一个θ即θ/θ=1/1)的(sinθ)/θ=1。它此时只能是0/0。

有了以上准备工作后,三角函数的导数就很好求得了。比如,正弦函数sinx的导数,众所周知,其增量比值函数最后求得为:cos(x+θ)·(sinθ)/θ,其对应的线性函数也就是割线函数与自变量θ的比式为:cos(x+θ)·K(θ)·θ/θ,分子分母相除消去各自的一个θ,有cos(x+θ)·K(θ)·1/1,其中cos(x+θ)·K(θ)即该线性函数(此时是割线)的系数(斜率)。当θ=0(当然也可以θ→0,但不必)时,与二次函数情况一样,割线变切线,得到导数cosx。

最后特别说明一点:由于θ/θ=1/1,我们完全可以而且实际也确实应该将这里的(注意,也仅仅是这里的!)自变量θ改成任何符号以与系数中的自变量θ严格区别开。也就是可以令θ/θ=g/g=1/1。这里的自变量g明确地是割线、切线上任意(除法后即为1了)两点的横坐标的距离(也就是自变量的增量),它已经与曲线无关了(脱离了曲线)。而系数中的自变量增量θ(当然也可以直接就视其为自变量),此时仍旧与曲线相关,也就是仍在曲线上,为曲线与该割线进而切线的交点距离(对切线而言,只是这个距离为0而已)。当然,在我们明确θ/θ的真实意义的前提下,也可以省略g/g不写。

3、微分

由导数的第二定义,因而原先x1 点的 微分,由2式可得

K(x1 ,0)·△x=K(x,△x)·△x=△y

................................................(3)

因此,由3式可以看出,微分也可以被定义成当自变量由x点起始有增量△x时,函数的增量△y,完全没有了什么增量△y的“线性主部”dy之类的说法,干净利索。

以著名的二次曲线y=x2为例,令

2x+△x=2x1

 ...........................................................(4)

4式等号左边为割线斜率(第二定义下的导数),右边为x1点的切线斜率(第一定义下的导数),由x1=x+△x/2可知,x˂ x1 ˂x+△x,x1即为中值。如将4式两边乘以自变量△x,则可得函数微分,即

2x1 ·△x=(2x+△x)·△x=2x·△x+△x2 =△y

..........................................................(5)

很显然,这正是我们十分熟悉的二次曲线函数的增量。它是个精确值,不需要什么线性主部dy,也没有什么“高阶无穷小”和极限之类拖泥带水的说法。物理上,如果某时段的平均速度乘以此时段,当然就是此时段的运动距离的精确值,不必再纠缠于某点的瞬时速度。

有以上分析我们可以看出,新诠释下的微分法实际就是变分法,二者是一致的,甚至后者还更本质。过去常有究竟是微分法基本还是变分法基本的争论,有人认为微分法的极限理论是“精确的”,而变分法是“近似的”。现在看此种看法是不对的。因此之故笔者把新诠释下的微积分命名为“增量分析”。

顺便提一下:由于此导数的定义无涉无穷小或极限,因此微分的定义,也无涉函数增量的线性部分,它就是函数的增量本身,等于自变量增量的中间某点(中值)的导数(第一定义)或更直观地就是割线的斜率(导数第二定义)与该自变量增量的乘积。因此在此观点下,所谓的中值定理就不是定理,而是微分定义的出发点。如此,函数自变量的微分定义问题即以往dx=△x疑难问题(注:以笔者所能见到,南京大学著名逻辑学家莫绍揆教授于上世纪八十年代最先提出,见文后参考文献1。其后师教民、丁小平等学者也有论及)不再存在。函数自变量的微分,就是实实在在的自变量的增量△x,无涉什么dx。详情请见文后参考文献中笔者的详细论述。

4、积分

在笔者基于增量中值的导数的微分定义以及上文公式3、4、5可以明显看出(同时由于不再需要无穷小或者并不真的存在的极限作为理论的必要条件),微分与积分在新观点下并无本质区别。因为只要函数在某区间连续、单调,无论怎么分割这个区间还是不分割,都会有相应的“中值”,因此正如区间的大小是相对的,微分与积分也是相对的。二者完全可以统一命名。当然在非严格的意义上,名词的区别还是可以保留的:积分是微分的累加或大些的微分;微分是小些的积分或积分的更小部分。可以看出,这个定义完全是相对的。本质是:小的微分的累加成积分,但此积分仍旧可以看成是一个大些的微分。这个观点,也可以由传统的微积分基本定理(函数的增量等于积分)看出。再考虑新诠释下的微分定义(公式3),我们可以得到

.................................................................................................(6)

公式6左边是著名的微积分基本定理,右边是新的微分定义(公式3),其中的F(b)-F(a),是函数的增量。只不过传统理论不可能把这个“函数的增量”看成是微分(传统上微分的定义是函数增量的所谓“线性部分”或“线性主部”),而按笔者理论或者解释,它完全符合精确的“微分”定义(即公式3)。由公式6看出,积分、微分本质上是一回事。同时,在笔者解释或理论下,中值定理的内容,就是理论的出发点,它更多的是定义而不是定理。

此外,传统极限理论下的微分定义,为了回避极限(更何况是不可达极限)这个尴尬的概念,只能把微分定义成是(起码可以是)宏观量。仅就这一点看,与笔者理论诠释下的微分概念倒是一致的。但在使用微分(其实也是微分的唯一真正用途)求积分时,传统理论又不得不令其趋于0,也就是取0为极限。而这一切均被隐蔽于小区间数量的趋于无穷上。于是其实问题又回到了出发点。

总之,今后的积分,再无lim∫之类表述的必要,也不需要∫,只要∑就完全可以了。

当然,在函数不连续或非单调的情况下,积分小区间的取无穷小仍旧有其意义。但它并不是积分定义所必须的。只是针对具体函数类型积分时的操作层面的问题。

5、辩证法与微积分——兼评马克思(包括恩格斯)的观点

马克思对微积分素有研究。他当年(见其«数学手稿»)明确指出,导数就是0点之值,尽管在该点会产生0/0。“数学家们的什么永远接近又不可达到之类根本就是昏话”(大意。也就是所谓“不可达极限”的另一个说法)。对于贝克莱悖论的消除,马克思(当然也包括恩格斯)的态度很明确,就是用辩证的观点去看。他倾向于点中有点的观点。据说上世纪五、六十年代曾有人认为马克思«数学手稿»落伍了或根本就是错的,有损马克思形象不该出版。但由笔者工作可知,马克思实际上比这些人有远见的多。对于马克思强调要用辩证法来看待微积分求导的问题,笔者认为,这就涉及一个点的两种“角色”:它即是曲线上的一个点,又是曲线在该点的切线上的点。而我们所求,正是该切线的斜率。这又涉及切线上的两个点,而且明确说这两个点的距离完全可以是宏观量,不必是无穷小,更不是根本就不存在的所谓不可达极限。这里,在这个角度或维度看是曲线,在那个角度或维度看是直线;在这个角度或维度看是一点,在那个角度或维度看又是两点,完全具有辩证法的意味[4](当然,在前述导数的割线定义下,它各自涉及曲线、割线上的两个点)。而如果一旦把原本明明是多维视角下的事物非要看成(投射到)一维,则必然产生问题,要丢失信息。具体到微积分,就是必然要产生贝克莱悖论。马克思既然承认存在0/0这样的东西,而且赋予它一定的合理性,那么显然,马克思实质上就是认为在导数点,不但增量比值函数的数值是0/0,其极限也必然是0/0。也就是通常人们认为的不存在或不合理之值。至于正常的导数值,要用“辩证观点”来得到。但天不假年,马克思没能继续深入研究下去就逝世了。现在可以看到,按笔者对微积分(指所谓“第一代”即牛顿、莱布尼兹意义上的)求导问题的论证与诠释及贝克莱悖论的彻底消除,其本质上不过是一个看问题的“维度”问题:比如在一个三维坐标系中,x方向的两点合一后,在y方向完全可以仍旧存在两个点。二者相关又不相关。具体到微积分求导,就是曲线上的两个点(构成与割线相交的)合二为一了(变成切线),但无论割线上还是最终在切线上,仍旧可以存在两个点,这就足以构成“斜率”的基本要素(线段不能为0,特别是作为分母的自变量增量),但同时又与曲线在切点的那唯一的一个点相互关联。按这个观点,马克思“点中有点”的基本观点,也完全说的通。只不过不能在一维空间去解释,而必须放在二维空间去解释罢了。明白说,就是如果把直线(这里是割线及切线)看成一个维度,以y表示;把曲线看成一个维度,以x表示。那么,当x上的两个点合并为一点时,在该点位置的y方向,仍旧存在两个点。这个意义上,不也就是“点中有点”了吗?

小结:关于辩证法以及辩证逻辑,历来存在两种截然不同的观点(可谑称为关于“对立统一”观点本身的对立统一)。一种认为,辩证法是更高一等的事物规律,规则一成不变的形式逻辑(包括数理逻辑)自然难以对其涵盖与描述;另一种则认为,辩证法太过虚无缥缈,怎么解释都行,无法量化、规范化,因此不屑一顾而弃之如敝屐,对之不闻不问。本文揭示:所谓辩证法及辩证逻辑,不过是把原本就是多维的事物,通过扩充一维到“多维空间”去表达而已。正因为其是多维视角的,因此自然比之一维视角要“高级”(在描述、说明更复杂的多维事物上);同时,正因为这种描述又不过是维度的不同(比之一维情况),一维空间中适用的所有规律、法则,在多维空间中都成立,因此从这个角度,它又并不有多么的“高大上”,也就是并不是高不可攀或虚无缥缈不好把握的,而是完全可以起码在理论上用现有逻辑学工具描述的。从这个意义,它又是平凡的、可描述的,也就是“接地气”的。总之,起码在笔者眼中,普通逻辑到辩证逻辑以致辩证法的桥梁已然沟通,宏壕不再存在。而围绕“对立统一”观点本身的对立,当可真正统一了。

参考文献

[1] 莫绍揆.试论微分的本质.南京大学学报(自然科学),1994年第03期

[2] 沈卫国.论增量分析视野下的测度问题、微积分求导及连续统的可数性.前沿科学,2017年03期.

[3] 方源,王元.微积分(上).高等教育出版社,2014年7月第一版.

[4] 沈卫国.论微积分求导公式的一种全新推导模式(解方程法)及贝克莱悖论的彻底消除.天津职业院校联合学报,2013年2期.

[5] 沈卫国.微积分核心概念的无矛盾表述——不需要无穷小、极限等概念的增量分析.天津职业院校联合学报,2015年05期.

[6] 沈卫国.微积分核心概念的无矛盾表述(续)——不需要无穷小、极限等概念的增量分析.天津职业院校联合学报,2015年11期.

[7] 沈卫国.微积分极限法(标准分析)的本质及问题详析.天津职业院校联合学报,2017年06期.

[8].沈卫国.辩证逻辑与智能.智能系统学报.2011年04期.

[9].沈卫国.微积分求导问题考辩与新解(上).天津职业院校联合学报.2018年04期.

[10].沈卫国.微积分求导问题考辩与新解(下).天津职业院校联合学报.2018年07期.

[11].沈卫国.数学基础若干问题的创新性思考.理论数学.2018年08期.

作者简介:沈卫国(1950-) 男,上海人,前区域供热杂志主编,西北工业大学原逻辑与人工智能研究所研究员,中国人民大学原现代逻辑与人工智能研究所研究员,主要曾经研究计算机控制系统,兼及数学基础理论等。

联系电话:13681013383

E-mail:qygrswg@sina.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值