二阶逻辑

基本定义

二阶逻辑的各种形式的表达力密切的连系于计算复杂性理论。特别是:NP是用存在性二阶逻辑可表达的语言集合。co-NP是用全称二阶逻辑可表达的语言的集合。PH是用二阶逻辑可表达的语言的集合。PSPACE是用带有增加的传递闭包算子的二阶逻辑可表达的语言的集合。EXPTIME是用带有增加的最小不动点算子的二阶逻辑可表达的语言的集合。在这些语言类之间的联系直接影响了逻辑的相对的表达力;例如,如果PH=PSPACE,则向二阶逻辑增加的传递闭包算子不使它更有表现力。

历史和价值

当谓词逻辑被弗雷格(独立的和更有影响力的 Peirce,他提出了术语二阶逻辑)介绍给数学社区的时候,他确实使用不同的变量来区分在物体上量化和在属性和集合上的量化;但是他自己没有去区分出两类不同的逻辑。在发现罗素悖论之后,认识到了他的系统有些毛病。最终逻辑学家建立了以各种方式做限制的 Frege 逻辑— 叫做一阶逻辑—除去了这个问题: 集合和谓词在一阶逻辑中不能被单独量化。标准的逻辑的阶数等级就是从那时开始的。

发现了集合论可以在一阶逻辑的设施内公式化为公理化系统(损失了某种完备性,但是不至于向罗素悖论那么糟糕),并且真就这么做了(参见Zermelo-Fraenkel 集合论),因为集合是数学的关键。算术、mereology 和各种其他强力逻辑理论可以被公理化的公式化,而不用使用比一阶量化更多的逻辑设施,随着哥德尔和 Skolem 忠于一阶逻辑,导致了对二(或更高)阶逻辑的工作的普遍放弃。

这种舍弃由一些逻辑学家活跃的推动着,最著名的是蒯因。蒯因推进了这种观点,在谓词语言句子比如 Fx 中,"x" 被认为是一个变量或指称一个物体的名字,所以可以被量化,如"对于所有的东西,情况是 . . ." 。但是 "F" 被认为是一个不完整句子的一个缩写,不是一个物体(甚至不是抽象的物体如性质)的名字。例如,它可能意味着" . . . 是个狗",认为在这种事物上可以做量化是没有什么意义的。(这种立场同弗雷格自己对概念-物体区别的讨论是非常一致的)。所以要使用一个谓词作为变量就要让它占据只有个别的变量可以占据的一个名字的位置。这种推理被 Boolos 拒绝了。

现 状

近年来二阶逻辑有某种程度的恢复,由 George Boolos 把二阶量化解释为在同一阶量化一样的域上的复数量化所支持。Boolos 进一步指出句子的非一阶可表达性,比如 "有些罪犯只相互倾慕" 和 "有些 Fianchetto 人进入仓库而没有任何别人陪同"。这只能用二阶量化的完全力量来表达。(实际上这不是真的,因为一般性的量化和偏序的(或分支的)量化同样足以表达特定类的非一阶可表达的句子而不使用二阶量化)。

但是,已经说过在有些数学分支中比如拓扑学中,需要二阶逻辑的能力来做完整的表达。这方面的工作已经由 Stephen G. Simpson 在逆数学的名义下完成了。已经证明了二阶逻辑不只对表达经典数学的某些重要部分是必须的,而且它也可以用做模型论和数学基础的工具。

二阶逻辑数学命题例子

1、黎曼猜想是一个二阶逻辑问题

黎曼猜想的:所有 “零点” 是一个集合,零点是这个对象上的函数,按照通常数学中定义,一个n元函数就是从论域A的个体的所有n元组的集合至A的一个映射。当我们用“所有个体”“存在个体”,量词加在论域的个体上,称为一阶量词。“

” 所有函数”,“存在函数”,“所有关系”,“存在关系”是二阶量词,即二阶逻辑。黎曼所说的“所有零点”就是“所有函数”的二阶量词。

黎曼猜想已经超出了G弗雷格建立的一阶逻辑形式系统(即谓词演算),涉及极为复杂的逻辑系统,一般的数学家对此毫无所知。

如果你不能理解二阶逻辑,我做一个比喻,“加速度”不是一个基本量(例如长度或者质量什么的),它是二阶变化率,即变化率的变化率。物理学二阶逻辑问题还有三体问题(月球、地球、太阳)和多体问题,都是无法一次性解决的问题。

黎曼猜想即:所有A(零点)成立的充分必要条件是包含A之中的B(s=x+yi时x=1/2成立)成立。

当所有的主项能够成立必须依赖于谓项成立的命题就是二阶逻辑命题。所有的数学定理都是一阶逻辑问题。

2、超越数问题是二阶逻辑问题

数学中有所谓“超越数”,就是比无理数还要无理的数,例如圆周率:π = 3.1415926535898....和e= 2.718281828459.....。

为什么人们无法得出一个精确的数值?

割圆术中,不断地利用勾股定理,来计算正N边形的边长,N每增加一个数值(一阶变化率),就会引起二阶变化。因为,它们是二阶变化率,例如只要知道计算圆周率的过程就自然而然知道了为什么。

3、货郎担问题

千禧年p=np问题就是二阶逻辑问题

弗里曼-戴森在【青蛙和鸟】中写道:持续探索混沌和许多被电子计算机打开的新领域时,数学在变得越来越复杂。数学家发现了可计算性的中心谜团,这个猜想表示为P不等于NP。

这个猜想声称:存在这样的数学问题,它的个案可以被很快解决,但没有适用于所有情形的快速算法可解决所有问题。

这个问题中最著名的例子是旅行销售员问题,即在知道每两个城市之间距离的前提下,寻找这位销售员在这一系列城市间旅行的最短路径。所有的专家都相信这是猜想是正确的,旅行销售员的问题是P不等于NP的实际问题。但没有人知道证明这一问题的一点线索。在赫尔曼-外尔19世纪的数学世界中,这个谜团甚至还没有形成。

这里的问题就是二阶逻辑问题,城市数n每增加一个就是一阶变化率,城市间距离就发生二阶变化率。

-----------

二阶逻辑允许有各种解释;它经常被认为包含在域的子集上,或在来自这个域到自身的函数上的量化,而不只是在这个域的个别成员之上。例如,如果这个域是所有实数的集合,通过如下书写你可以在一阶逻辑中断言每个实数的加性逆元的存在性。

但你需要使用二阶逻辑来断言实数的最小上界性质:

并在点的位置插入一个陈述,如果 A 是非空并且它在 R 中有一个上界,则A 在 R 中有一个最小上界。

在数理逻辑中,二阶逻辑是命题逻辑或一阶逻辑的扩展,它包含在谓词位置上(而不是像一阶逻辑那样只能在项的位置上)的变量,和约束它们的量词。所以:我们可以表达关于 Jones 的二值原理:对于所有性质,Jones 要么有它要么没有它。

--------------

一阶二阶这类的词, 一是表达量化的程度, 二是表达逻辑系统多有表达能力.
我们一步步来, 首先是命题逻辑(很少部分人叫它作零阶逻辑). 

在命题逻辑里, 每一个字母就代表一个命题, 所以命题逻辑只能表达句子之间的关系, 比如“p&q”, “if p then q”等等的真值如何从p和q的真值中计算出来。

一阶逻辑则引入了两个量词, 即universal quantifier(倒A)和existential quantifier(倒E), 并且加入了一阶谓词和individual variables和individual constants. 这些导致一阶逻辑可以量化individuals in the domain. 比如经典的三段论就可以被一阶逻辑表达:
For all x, Hx->Mx
Hs
----
Ms
其中for all x就是量化了所有individuals, 即domain里的任意一对象, 用individual variable x来表示. Hx则是表示x属于H(Human)这个谓词的extension, Mx表示x属于M(Mortal)的extension. s则是individual constant, 代表苏格拉底. 然后通过Universal Instantiation和Modus Ponens推出结论Ms(Socrates is mortal). 这里要提到一个集合论的逻辑基础, 如果逻辑学的基础是集合论的话, 那么individuals就是最小的个体对象, 一阶谓词则是包含个体的集. 那么For all x, Hx->Mx则可以“翻译”成:对于任意个体x,如果x属于H这个集,那么x就属于M这个集。

但注意, 我们的量词在这里只能表达“对于任意一个individual x”, 然而这个量词的表达能力是有限的. 比如说Leibniz Law: “对于任意individual x和y, 如果x和y相等, 那么对于任意性质P, Px当且仅当Py. ” 这段话里面的“对于任意性质”, 用一阶逻辑是表达不出来的. 因为一阶逻辑只能量化个体, 而性质却是包含个体的集, 所以我们要引入二阶variable, 才能量化性质, 从而表达“对于任意包含个体的集合”。

这句话用二阶逻辑写出来会是这样:

∀x,y (x=y → ∀P (Px<->Py))

注意看第二个量词, 量化的不是个体x或y, 而是性质P. 这个量化就叫做二阶量化。

集合论上来说, 一阶量化个体, 二阶量化包含个体的集合, 三阶量化包含包含个体的集合的集合, 等等如此类推。

下面在介绍一下形式系统:

在逻辑与数学中,一个形式系统(英语:Formal system)是由两个部分组成的,一个形式语言加上一个推理规则或转换规则的集合。一个形式系统也许是纯粹抽象地制定出来,只是为了研究其自身。另一方面,也可能是为了描述真实现象或客观现实的领域而设计的。

形式系统(Formal System),包含字母、字的集合及由关系组成的有限集合。例如:集合论、布林代数、欧几里得平面几何及贝克式正规形式(Backus Normal Form)都是形式系统。

常用的形式系统有:

语言、数理规则和逻辑。其中由于数学的研究对象是形式系统中唯一天生的逻辑自洽系统,因此数学也被一些人称为:形式科学。

而语言大类中,部分为逻辑自洽的形式系统,如计算编程用的各类程序语言等。在数学领域里,形式证明是形式系统的产物,由一些公理与演绎规则组成。定理便是形式证明可能的最后一行结论。这几个步骤总和起来便是数学界通称的形式主义。

大卫·希尔伯特创立元数学以作为讨论形式系统的学科。任何用于讨论形式系统的语言称为元语言。元语言也许像普通语言一样自然,或它可能部分形式化,但它通常比起受检验系统的形式语言来得较不正规化。此形式语言称为对象语言,意指问题议论的对象。

某些理论学家将形式主义粗略视为形式系统的同义词,但此词也同时指称特定风格的符号,例如保罗·狄拉克的狄拉克符号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值