【智库报告】2030~2040年人机融合对战争形态及军事体系变革的影响

往期回顾

【智库报告】兰德公司发布《人工智能和机器学习在太空域感知中的运用》报告

【智库报告】正在形成的海上杀伤网—杀伤网的概念探讨

简介

在当今快速发展的科技时代,人机融合(Human-Machine Integration, HMI)已成为军事领域的一个重要研究方向。美国陆军战争学院的“未来风暴”团队于2024年5月发布题为《超越DOTMLPF-P:2040年前的人机融合新范式》的研究报告,深入探讨了2030年至2040年间“人机融合”如何重塑战争形态,并分析了其对军事力量设计(DOTMLPF-P)的影响。本文将对这份报告进行深度分析与解读,以揭示其核心观点和对未来军事发展的潜在影响。

173d02d6e9c1472dcaa174693b3a9c3e.png

1

人机融合对战争形态的演变

(1)人类与机器的角色分工

未来战争中,人类指挥官(CDR)仍将在决策制定、战略规划及复杂情境下的判断中占据核心地位,而机器将通过数据处理、模式识别及实时分析等功能辅助人类。人工智能(AI)在自然语言处理(NLP)和情感智能(EI)方面将持续进步,预计到2035年将实现“可解释”性和“情感智能”的高度融合。这将增强军事AI在复杂情境中的适应能力,同时提高人类对AI决策的信任。

(2)战争形态的转变

“人机融合”将推动战争从传统的物理战场向数据驱动的虚拟战场转变。未来的冲突将更多依赖于信息优势、网络战及自动化武器系统。研究指出,尽管机器在执行高效、重复性任务方面表现出色,但在伦理决策、冲突解决及情境理解等方面仍需依赖人类的主导作用。

(3)技术与伦理的平衡

“人机融合”的核心挑战在于如何在技术进步与伦理框架之间找到平衡。文件提到,AI系统需要在道德和社会框架内运行,以确保其决策的公正性和合理性。这种“智慧型AI”的发展将是未来技术进步的重要方向

2

军事体系的变革需求

(1)条令与组织(Doctrine & Organization)

随着“人机融合”的深入,军事条令需要重新定义人类与机器的协作模式。例如,如何在战场上分配任务、协调人机资源,以及如何在快速变化的环境中保持灵活性。组织结构也需调整,以适应数据驱动的作战模式。未来的军事组织可能更加扁平化,强调跨部门协作和信息共享。

(2)训练、领导与教育(Training & Leadership and Education)

文件强调,培养能够在数据驱动环境中提出正确问题并做出决策的军事人才至关重要。这需要开发新的教育工具和培训方法,例如利用生成式AI(如ChatGPT、Elicit等)进行模拟训练和决策支持。军事教育还需注重伦理与技术的结合,确保指挥官能够在复杂情境中平衡技术优势与道德责任。

(3)装备与政策(Materiel & Policy)

“人机融合”的实现需要先进的硬件支持,如高性能计算机、传感器及自动化系统。同时,政策层面需制定明确的规则,规范AI在军事领域的应用,避免潜在的滥用或误用。

3

人工智能技术的进步及其军事应用

(1)自然语言处理(NLP)与情感智能(EI)

文件指出,自然语言处理技术的进步将显著提升军事AI的解释能力和情感智能水平。这不仅有助于增强人机互动的自然性,还能提高AI在复杂任务中的适应能力。然而,自然语言处理技术仍面临数据偏差、隐含意义理解及上下文感知等挑战。未来的研究需重点解决这些问题,以确保AI在军事应用中的可靠性。

(2)数据驱动的决策支持

文件多次提到,未来的战争将以数据为核心。AI通过对海量数据的实时分析和模式识别,为指挥官提供决策支持。这种能力将显著提升军事行动的效率和精准度。

(3)脑机接口(BCI)

非侵入式脑机接口可能成为人类与机器通信的先进方式,通过电子“中间人”设备实现隐形通信。例如,OpenBCI的Galea Beta设备集成了生理传感器,能够监测大脑、心脏、皮肤、肌肉和眼睛的活动,为混合现实和神经技术搭建桥梁。

(4)微学习

到2040年,士兵几乎肯定会使用微学习进行训练和作战准备。微学习涉及简短、针对性的学习片段,旨在快速获取技能,非常适合动态环境如军事训练。它结合了自适应AI技术、增强和虚拟现实来模拟真实场景,以及移动技术以便在任何地点使用。

(5)量子计算

到2030年代末,量子计算可能会开始通过引入新的能力来改变军事行动,影响数据分析、传感器和密码学等领域。谷歌和IBM预计到2029年和2030年先后实现超百万量子比特级计算能力,这标志着量子计算的重大成就。

(6)伦理与法律挑战

AI在军事领域的应用不可避免地引发伦理和法律问题。例如,自动化武器的使用是否符合国际法?AI决策的透明性和可解释性如何保障?这些问题需要在技术开发的同时得到解决。

4

国际竞争格局:美中AI竞赛

(1)美国的优势

文件指出,美国在AI领域的竞争优势主要体现在以下几个方面:

  • 创新生态系统:开放的创新环境促进了技术的快速发展;

  • 人才储备:拥有全球领先的AI研究人员和工程师;

  • 监管与伦理框架:强调技术发展的透明性和责任性;

  • 国际合作:通过与盟友的合作,扩大技术影响力。

(2)中国的挑战

中国自2017年启动“新一代人工智能发展规划”,目标在2030年前成为全球AI领导者。其优势包括:

  • 快速的技术实施能力:通过政府主导的资源分配,加速技术落地;

  • 集中化的政策支持:中共中央在AI发展中的主导地位确保了资源的高效利用。

然而,该文件指出,中国在AI伦理和国际规范方面面临挑战。例如,其集体主义价值观可能与国际社会的个人权利保护理念产生冲突。

(3)未来趋势

美中AI竞赛不仅是技术的较量,更是价值观和全球影响力的竞争。未来,谁能在AI伦理、技术规范及国际合作中占据主导地位,谁就能在全球AI格局中掌握话语权。

5

结论与展望

2030至2040年间,“人机融合”将深刻改变战争形态,并对军事体系的各个方面提出新的要求。未来的军事竞争将围绕技术创新、伦理规范及国际合作展开。美国和中国作为全球AI领域的主要竞争者,将在技术发展和价值观传播方面展开激烈较量。为了在未来冲突中保持竞争优势,军事组织需:

(1)加强人机协作的研究与实践;

(2)培养能够在数据驱动环境中决策的军事人才;

(3)制定明确的政策和伦理框架,规范AI的军事应用。

总之,“人机融合”不仅是技术的进步,更是军事思想和组织模式的革命。通过合理规划和有效实施,未来的军事力量将能够在复杂多变的环境中保持优势,确保国家安全和全球稳定。

回复以下关键词查看系列文章:

热点专题:ABMS无人自主系统联合全域指控城市作战

战略规划:发展规划条令条例智库报告

作战概念:马赛克战多域作战分布式杀伤

前沿技术:人工智能云计算大数据物联网区块链5G

系统装备:陆军海军空军太空军网络空间|NC3防空反导后勤保障

空中交通:NextGenSESAR|无人机

396bb90c0bd969242860aacbacd9c7b1.gif

8774106949fe825034a78038f0f96ba2.jpeg

327a3c4cb0257c5ffd9fc9e7ea2148ed.jpeg

更多信息 长按二维码加关注

内容概要:《2024中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值