人工智能(AI)在科学研究中的应用带来了巨大的机遇,同时也面临着诸多挑战。
一、机遇
传统数学建模难以捕捉生物、天气和经济系统中的复杂相互作用,而深度学习模型在天气预测中已显著超越传统方法,不仅预测精度更高,且能有效减少计算成本。此外,在经济学中,基于生成模型的代理可以在更动态的环境中自我学习,模拟不同政策对市场的影响。许多科学问题具有极大的搜索空间,仅凭传统方法难以全面探索最佳解决方案。例如,AlphaProof和AlphaGeometry等系统能够生成和验证数学证明,在国际数学奥林匹克(IMO)中解决了四个高难度问题。在药物设计领域,AI通过优化分子排列显著缩短药物筛选时间。
AI与科学的融合促进了跨学科合作的发展。物理学家、化学家、生物学家、计算机科学家等不同领域的专家需要共同合作,才能充分发挥AI在科学研究中的潜力。这种跨学科合作不仅有助于解决复杂的科学问题,还能够促进不同学科之间的知识交流和创新。AI为科学研究带来了新的范式和发现模式。传统的科学研究通常基于假设驱动,而AI可以通过对大量数据的分析,发现数据中的潜在模式和规律,从而提出新的研究假设。这种数据驱动的研究模式与传统模式相结合,有望加速科学发现的进程,发现以往难以察觉的科学现象。
二、挑战
AI模型的性能高度依赖于数据的质量和数量。在科学研究中,获取高质量的数据往往面临诸多困难,如实验误差、数据缺失、样本偏差等问题。这些问题可能导致AI模型产生不准确的预测结果,影响科学研究的可靠性。不少领域的科研数据获取成本高、格式非标准化、数据敏感性强等问题普遍存在,成为制约AI有效应用的难题。AI在应用过程中面临数据污染、长尾分布和数据多样性等问题,研究者们呼吁在人机协作中更好地理解和处理长尾数据,提高AI的适用性。许多先进的人工智能模型,如深度学习模型,通常被视为“黑箱”,其决策过程难以理解和解释。在科学研究中,这一问题尤为突出,因为科学家需要理解模型的输出结果背后的原理,以便评估其可靠性和科学性。
三、结合
不同专业的科学家可以通过以下方式与AI结合,以提升科研效率和创新能力:
生命科学领域数据量庞大且复杂,AI可以帮助科学家高效解析测序数据,分析生物分子的调控关系和规律。例如,申恩志团队利用计算和AI技术,高效解析非编码RNA的调控关系,解决了传统实验方法难以解决的问题。科学家可以使用AI工具如AlphaFold进行蛋白质结构预测,或利用AI co-scientist生成新颖的研究假设和实验方案。这些工具能够基于大量文献和数据提出有潜力的科学假设,为实验设计提供参考。组建包含信息学、生物化学、生物物理、遗传学和药物学等多学科背景的团队,共同开展研究。这种跨学科合作能够充分发挥AI在生命科学研究中的潜力。
在物理领域,AI可用于量子力学仿真计算、物理场模拟等场景,AI能够帮助科学家更高效地模拟复杂的物理现象,预测材料的性质和行为。AI可以基于已有数据和理论,为物理实验设计更优的方案,提高实验效率和成功率。例如,AI co-scientist能够根据研究目标生成详细的实验协议,供科学家参考和优化。
AI在化学领域的应用包括分子动力学计算、分子生成和催化剂设计等。AI模型可以根据目标性质生成新的分子结构,加速化学物质的设计和筛选过程。利用AI技术处理化学实验中产生的大量数据,快速提取有价值的信息,帮助科学家更好地理解实验结果,指导后续研究。
不同领域的科学家与AI系统紧密协作,充分发挥各自的优势。科学家提供专业知识、研究方向和目标,审查AI生成的假设和方案,提供反馈和修改意见;AI则利用其数据处理和推理能力,为科学家提供文献综述、假设生成、实验设计等方面的建议。AI不仅可以应用于上述提到的生命科学、物理科学和化学科学领域,还可以拓展到更多学科领域,如环境科学、材料科学等。不同领域的科学家可以根据自身需求,探索AI在各自领域的应用潜力。
总之,不同专业的科学家可以通过与AI的结合,实现优势互补,加速科学发现的进程,推动科学研究向更高效、更创新的方向发展。