在军事领域,人机协同的核心目标就是整合人与机器的优势,从而提升战术与战略决策的速度与精度,这种整合不仅能提高作战效率,还能增强应对复杂多变战场环境的能力。那么应该如何通过人机协同实现这一目标呢?
一、明确人机协同的分工与协作
1、人类的优势
(1)战略规划与决策:人类具有丰富的经验、直觉和对复杂情境的深度理解,能够进行高层次的战略规划和决策。例如,军事指挥官可以根据战场态势、敌我双方的实力对比等因素,制定灵活多变的作战策略。
(2)创造性与灵活性:人类具有创造力和灵活性,能够应对突发情况和复杂问题。在面对未知威胁或复杂战场环境时,人类可以凭借经验和直觉做出合理的判断和决策。
(3)道德与伦理判断:人类具有道德和伦理观念,在决策过程中能够考虑道德和伦理因素,避免做出违背伦理道德的行为。
2、机器的优势
(1)数据处理与分析:机器能够快速处理和分析大量数据,提供准确的情报支持。例如,通过先进的侦察设备和数据分析算法,机器可以实时监测战场态势,快速识别潜在威胁。
(2)实时监测与执行:机器能够实时监测战场态势,快速执行任务。例如,自动化火力打击系统可以根据实时数据快速做出反应,提高作战效率。
(3)精确性与一致性:机器在执行任务时具有高度的精确性和一致性,能够按照预设的程序和规则准确执行任务,减少人为错误。
二、优化人机协同的系统设计
1、系统架构设计
(1)模块化设计:将人机协同系统设计为多个模块,每个模块负责特定的功能,便于系统的扩展和维护。例如,将侦察模块、分析模块、决策模块和执行模块分开设计,提高系统的灵活性和可扩展性。
(2)分布式架构:采用分布式架构,将系统分散部署在不同的节点上,提高系统的可靠性和抗毁性。例如,在军事作战中,将侦察设备、分析系统和指挥中心分散部署在不同的位置,确保即使部分节点被摧毁,系统仍能正常运行。
2、信息共享与交互机制
(1)实时数据传输:建立高效的信息共享机制,确保人类和机器之间能够实时传输数据。例如,通过高速通信网络将侦察设备获取的实时数据传输给指挥官,同时将指挥官的指令传输给机器。
(2)数据可视化:利用数据可视化技术,将复杂的战场态势和监测数据以直观的方式呈现给人类决策者。例如,通过虚拟现实(VR)或增强现实(AR)技术,将战场态势实时展示给指挥官。
(3)智能交互界面:设计智能交互界面,使人类能够方便地与机器进行交互。例如,通过语音识别和自然语言处理技术,使指挥官能够通过语音指令与机器进行交互,提高交互效率。
三、我们实验室(北邮人机交互与认知工程实验室)首次提出“态与势的交并比”、“感与知的交并比”、“态势与感知的交并比”、“人类算计与机器计算的交并比”、“态势感知宽度与深度”五组新概念以尝试解决人类算计与机器计算协同效率问题
“态与势的交并比”、“感与知的交并比”、“态势与感知的交并比”三组新概念可以视为一种类比于计算机视觉中“交并比”(IoU)的创新性思维工具,用于衡量“态”与“势”、“感”与“知”、“态势”与“感知”之间的重叠程度和覆盖范围。在态势感知领域,明确“态”与“势”、“感”与“知”、“态势”与“感知”的关系对于理解复杂系统或环境至关重要(具体见后面案例及参考书籍)。
为解决人机协同计算与算计效率问题,首次提出态势感知宽度与深度的概念,以体现出态、势、感、知相辅相成关系,宽度为深度提供全面的数据基础,深度则通过对数据的深入分析和理解,挖掘出更有价值的信息,从而更好地指导决策和行动。
“人类算计与机器计算的交并比”也是一个创新性的概念,用于衡量深度分析与广泛监测之间的匹配度和协同性。通过计算交并比,可以评估分析人机环境系统对监测数据的理解能力,并根据结果优化分析方法和制定策略。这一概念在军事领域、网络安全等多个领域具有重要的应用价值,能够帮助相关系统更好地理解和应对复杂环境。
另外,态势感知的宽度和深度并没有固定的最优比例,而是需要根据具体场景、目标、资源和实时需求动态调整。一般来说,在宏观监测、预防性任务和资源有限时,宽度占比可能更高(如 60%-70%),宽度优先;在应急响应、高价值目标分析和资源充足时,深度占比可能更高(如 60%-70%),深度占优;在大多数情况下,宽度和深度需要平衡(如 50%-50%),以确保全面且深入的态势感知能力。
四、强化人机协同的训练与教育
1、人类操作员培训
(1)技术培训:对人类操作员进行技术培训,提高他们对机器系统的理解和操作能力。例如,培训指挥官如何使用先进的侦察设备和指挥系统。
(2)协同训练:开展人机协同训练,增强人机之间的默契。例如,通过模拟作战环境,训练指挥官与机器的协同作战能力。
2、机器学习与适应
(1)自学习能力:开发具有自学习能力的机器系统,使机器能够根据人类的反馈和实际运行情况,不断优化自身性能。例如,通过机器学习算法,使机器能够根据不同的作战环境和任务需求,自动调整执行策略。
(2)适应性算法:设计适应性算法,使机器能够根据不同的作战环境和任务需求,自动调整执行策略。例如,通过自适应算法,使机器能够根据战场态势的变化,自动调整侦察和打击策略。
五、实际应用场景与案例
1、作战指挥系统
案例:美国陆军的“人机协作”(HAT)项目
• 背景:通过迭代评估机制,支持人机持续任务规划、执行与评估循环,提升多接口兼容能力。
• 优化方法:利用“态与势交并比”评估人类指挥官的作战计划与机器执行结果之间的匹配度;利用“感与知交并比”评估侦察设备的感知数据与分析判断结果之间的匹配度。
• 效果:显著提升了作战指挥系统的效率和准确性,减少了任务执行中的偏差。
2、情报分析系统
案例:情报分析与预测系统
• 背景:人类情报分析师根据历史数据和经验预测敌方行动趋势,机器通过数据挖掘和分析算法处理大量情报数据并提供实时情报。
• 优化方法:利用“态与势交并比”评估人类的预测与机器的分析结果之间的匹配度;利用“感与知交并比”评估侦察设备的感知数据与分析判断结果之间的匹配度。
• 效果:提高了情报分析的准确性和及时性,增强了对敌方行动的预测能力。
3、网络安全系统
案例:网络安全防御系统
• 背景:安全专家根据威胁情报预测潜在攻击并制定防御策略,机器通过网络流量监测和入侵检测系统实时监测网络状态并执行防御任务。
• 优化方法:利用“态与势交并比”评估人类的防御策略与机器的监测结果之间的匹配度;利用“感与知交并比”评估网络流量监测数据与分析判断结果之间的匹配度。
• 效果:提高了网络安全系统的防御能力,减少了误报和漏报。
简言之,通过明确人机协同的分工与协作、优化系统设计、强化训练与教育等措施,可以有效整合人与机器的优势,提升战术与战略决策的速度与精度。具体方法包括:明确人机角色与职责,合理分解任务;加强信息共享与反馈机制,确保实时数据传输和调整;优化系统设计与算法,提升系统的整体性能;开展培训与教育,增强人机之间的默契。这些优化措施不仅有助于提高任务执行的精确性和速度,还能增强系统的适应性和灵活性,以应对复杂多变的战场环境。通过实际应用场景与案例的分析,可以看出这些优化措施在提升作战效能和决策效率方面具有重要的应用价值。
再进一步,应该如何利用“态与势交并比”评估人类指挥官的作战计划与机器执行结果之间的匹配度呢?如何利用“感与知交并比”评估侦察设备的感知数据与分析判断结果之间的匹配度呢?
客观的说,利用“态与势交并比”和“感与知交并比”评估人机协作中的匹配度,需要将抽象的概念具体化为可操作的量化指标。以下是详细的步骤和方法以实现这一目标:
六、利用“态与势交并比”评估作战计划与执行结果的匹配度
1、定义集合
(1)态集合(S):包含所有感知到的当前战场状态信息。例如:
• 敌方兵力部署的具体位置和数量。
• 当前战场的地形、天气条件。
• 实时监测到的敌方行动轨迹。
(2)势集合(T):包含所有预测到的战场发展趋势和潜在变化方向。例如:
• 预测的敌方未来行动方向和可能的攻击目标。
• 预测的战场态势变化(如天气对作战的影响)。
• 预测的敌方可能采取的战术变化。
2、确定交集和并集
(1)交集S∩T:感知到的当前状态与预测到的发展趋势之间的匹配部分。例如:
• 指挥官预测敌方会从某个方向发起攻击,而侦察设备实际监测到敌方确实在该方向有大规模行动。
• 预测的敌方战术变化与实际监测到的战术变化一致。
(2)并集S∪T:所有感知到的当前状态和所有预测到的发展趋势的总和。
3 量化方法
(1)数据收集:
• 收集侦察设备感知到的实时战场状态数据。
• 收集指挥官制定的作战计划和预测的发展趋势数据。
(2)数据处理:
• 对数据进行标准化处理,确保不同来源的数据可以进行比较。
• 使用地理信息系统(GIS)等工具,将敌方位置、行动轨迹等数据进行可视化处理。
(3)计算交并比:
IoU态与势=(S∩T)/(S∪T)
(4)评估指标
• 感知准确性:感知到的当前状态与实际状态的匹配程度。
• 预测准确性:预测到的发展趋势与实际发展趋势的匹配程度。
• 态势一致性:感知到的当前状态与预测到的发展趋势之间的匹配程度。
七、利用“感与知交并比”评估侦察设备感知数据与分析判断结果的匹配度
1、定义集合
(1)感集合P:包含所有通过侦察设备获取的原始信息。例如:
• 侦察卫星拍摄的图像。
• 无人机侦察获取的视频数据。
• 电子侦察设备截获的信号。
(2)知集合C:包含所有经过分析、理解和判断后的认知结果。例如:
• 对侦察图像的分析结果,如敌方兵力部署的具体位置。
• 对电子信号的分析结果,如敌方通信网络的结构和活动规律。
• 对视频数据的分析结果,如敌方行动的意图和目标。
2、确定交集和并集
(1)交集P∩C:感知到的原始信息与分析判断后的认知结果之间的匹配部分。例如:
• 侦察设备感知到的敌方行动与分析判断的敌方行动一致。
• 侦察设备获取的图像中识别出的敌方装备与分析判断的装备类型一致。
(2)并集P∪C:所有感知到的原始信息和所有分析判断后的认知结果的总和。
3、量化方法
(1)数据收集
• 收集侦察设备感知到的原始数据。
• 收集分析人员对这些数据的分析判断结果。
(2)数据处理
• 对原始数据进行预处理,如图像增强、信号去噪等。
• 使用机器学习算法或专家系统对原始数据进行分析,生成认知结果。
(3)计算交并比:
IoU(感与知)=(P∩C)/(P∪C)
(4)评估指标
• 数据准确性:感知到的原始信息与实际信息的匹配程度。
• 分析准确性:分析判断后的认知结果与实际态势的匹配程度。
• 信息一致性:感知到的原始信息与分析判断后的认知结果之间的匹配程度。
4、实际应用案例
(1)美国陆军的“人机协作”(HAT)项目
• 背景:通过迭代评估机制,支持人机持续任务规划、执行与评估循环,提升多接口兼容能力。
• 优化方法:
• 利用“态与势交并比”评估指挥官的作战计划与机器执行结果之间的匹配度。例如,指挥官预测敌方会从某个方向发起攻击,而侦察设备实际监测到敌方确实在该方向有大规模行动,交并比高,说明作战计划与执行结果匹配度高。
• 利用“感与知交并比”评估侦察设备的感知数据与分析判断结果之间的匹配度。例如,侦察设备获取的图像中识别出的敌方装备与分析判断的装备类型一致,交并比高,说明感知数据与分析判断结果匹配度高。
• 效果:显著提升了作战指挥系统的效率和准确性,减少了任务执行中的偏差。
(2)情报分析与预测系统
• 背景:人类情报分析师根据历史数据和经验预测敌方行动趋势,机器通过数据挖掘和分析算法处理大量情报数据并提供实时情报。
• 优化方法:
• 利用“态与势交并比”评估人类的预测与机器的分析结果之间的匹配度。例如,人类预测敌方会采取某种战术,而机器分析的结果也支持这一预测,交并比高,说明预测与分析结果匹配度高。
• 利用“感与知交并比”评估侦察设备的感知数据与分析判断结果之间的匹配度。例如,侦察设备获取的信号数据中识别出的敌方通信模式与分析判断的通信模式一致,交并比高,说明感知数据与分析判断结果匹配度高。
• 效果:提高了情报分析的准确性和及时性,增强了对敌方行动的预测能力。
(3)网络安全防御系统
• 背景:安全专家根据威胁情报预测潜在攻击并制定防御策略,机器通过网络流量监测和入侵检测系统实时监测网络状态并执行防御任务。
• 优化方法:
• 利用“态与势交并比”评估人类的防御策略与机器的监测结果之间的匹配度。例如,安全专家预测某类攻击会针对特定系统,而机器监测到的攻击目标也符合这一预测,交并比高,说明防御策略与监测结果匹配度高。
• 利用“感与知交并比”评估网络流量监测数据与分析判断结果之间的匹配度。例如,网络流量监测系统识别出的异常流量与分析判断的攻击行为一致,交并比高,说明感知数据与分析判断结果匹配度高。
• 效果:提高了网络安全系统的防御能力,减少了误报和漏报。
通过量化“态与势交并比”和“感与知交并比”,可以有效地评估人机协作中的匹配度。具体步骤包括:(1)定义态与势、感与知的集合;(2)确定交集和并集;(3)收集数据并计算交并比;(4)根据交并比的结果,评估人机协作的效率并进行优化。
概括而言,这些量化方法不仅有助于提高任务执行的精确性和速度,还能增强系统的适应性和灵活性,以应对复杂多变的战场环境。通过实际应用场景与案例的分析,可以看出这些量化方法在提升作战效能和决策效率方面具有重要的应用价值。
我们实验室(北邮人机交互与认知工程实验室)首次提出“态与势的交并比”、“感与知的交并比”、“态势与感知的交并比”、“人类算计与机器计算的交并比”、“态势感知宽度与深度”五组新概念以尝试解决人类算计与机器计算协同效率问题。