混合效应模型(Mixed-Effects Models)

***优势:能够考虑到参与者和项目内部和之间得变化,很好处理缺失数据与不平衡设计。当一个值缺失时仅移除观察值;参数估计精确加权(缺失观察值较多的参与者对参数估计影响的权重会更小);拟合模型所提供的系数估计值会体现效应大小和方向

固定和随机效应(Fixed and Random Effects)

固定效应:在不同实验中持续存在(我理解为自变量),对平均趋势建模,连续数据。eg:条件效应

随机效应:平均趋势在某些分组因素的不同水平变化程度进行建模,是从一些人群中抽样的离散单位,因此是分类、离散的。

random intercept:随机偏离平均RT

指定每个参与者的随机截距允许模型估计每个参与者对平均RT的固定估计的偏差。(不同被试的个人截距不同),不同项目的随机截距使模型能够估计每个项目与固定截距的偏差(一些条件比其他条件更快反应)。而多元回归中,同一条回归线适用于所有参与者和项目,因此预测不够准确。

混合效应模型可以解释的另一个变异来源是,被模拟为固定效应的变量实际上可能对不同的参与者(或项目)有不同的影响。这句话的意思是,一些变量虽然是固定效应,并且这个效应在不同的参与者样本中持续存在。但参与者属于人群中的随机样本,因此模式与参与者之间的互动方式是随机的,因此模式的随机斜率允许模型估计每个参与者对固定趋势的偏差。

相对于纯固定效应模型,垂直线所表示的残差误差在随机截距模型中要小得多(因为纯固定效应模型只有一条观测值的回归线,而混合效应模型由于包含多条观测值回归线,因此残差要小许多)

随机效应之间的相关性(Correlations Among Random Effects)

随机效应之间的相关性可以提供关于条件效应中个体差异的有用信息:

若随机斜率和截距之间呈负相关性,则表明:截距较高的参与者往往具有较低的斜率;但这时候我们要考虑到模式效应的方向——正效应:较低的斜率表明斜率更接近于0,因此RT更小受到模式操纵的影响则更小;负效应:较低的斜率表明斜率为负值,则RT更小,受到模式操纵的影响更大。

Which Random Effects Can You Include?

参与者和按项目的斜率分别只适用于主体内项目内设计

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值