Python联合Halcon(详细教程)

前言

在项目开发过程中,若遇到需要将Halcon的图像处理代码加载到C++项目中,此时仅需将Halcon代码导出为C++形式即可。
若需要将Halcon代码移植到python项目中,此时导出选项无python形式,又该如何实现?本博客将介绍Python联合Halcon的两种常用方法

方法

法1:(导入python版halcon库,复现代码)

----------适用于代码较少较为简单的情况。------------

基本要求: Python版本>=3.8 ; Halcon版本 >=20.11


1、新建虚拟环境(若Python版本满足条件,则可跳过)
打开anaconda prompt,输入如下指令,点击回车。

conda create -n halcon python=3.8     //halcon为环境名称

键入y,开始创建。
在这里插入图片描述
出现如下信息,即为创建成功。
在这里插入图片描述
2、安装Halcon库
输入以下指令,激活环境。

activate halcon(对应环境名称)

输入以下指令,进行Halcon库安装。

pip install mvtec-halcon==20110

tip:20110为电脑安装的Halcon版本号,可通过打开Halcon,点击帮助->关于进行查看。
在这里插入图片描述
出现如下画面,即为安装成功。
在这里插入图片描述
3、测试验证安装是否成功
新建.py文件,输入以下代码,导入halcon库。

import halcon as ha

测试代码:

WindowHandle = ha.open_window(0, 0, 500, 400, father_window=0, mode='visible', machine='')
Image = ha.read_image('die/die_03')
# 调整窗口中图像的显示区域(风险:图像会根据设置窗口尺寸比例拉伸)
# width, height = ha.get_image_size(Image)
# ha.set_part(WindowHandle, 0, 0, height, width) # 窗口显示完整图像区域
ha.disp_obj(Image, WindowHandle)
ha.wait_seconds(5)

能成功运行,即说明安装成功。
4、代码复现
Halcon里算子名称与python中对应的函数名基本相似,使用时根据其对库中的相应函数进行调用即可。例如:
halcon:
在这里插入图片描述
python:

DieGrey = ha.read_image('die/die_03')
ha.disp_obj(DieGrey, WindowHandle)

法2:(封装函数,直接调用.hdev文件)

----------适用于代码较多较为复杂的情况。------------

基本要求: Python版本>=3.8 ; Halcon版本 >=20.11,仍需安装好halcon库(参照法1:(1-3))。


1、将代码中较复杂部分进行封装
以如下Halcon代码为例。将图像处理部分进行封装,即7-9行代码。
在这里插入图片描述
步骤1:选中该部分代码。
在这里插入图片描述
步骤2:点击函数->创建新函数设置名称和相关变量,点击确定
在这里插入图片描述
在这里插入图片描述
此时代码中相应部分已由自定义的函数替代。(选中函数名右键,可选择显示函数内部代码)
在这里插入图片描述

在这里插入图片描述

2、设置接口
步骤1:在python中编写好未进行封装的前、后处理代码。
步骤2:加载.hdev文件中的自定义函数(test2)。

program = ha.HDevProgram('C:/Users/professionalteam/Desktop/ball.hdev')
proc = ha.HDevProcedure.load_local(program, 'test2')
proc_call = ha.HDevProcedureCall(proc)

步骤3:在对应代码位置调用该函数。

# 设置输入变量Image(形参名)
proc_call.set_input_iconic_param_by_name('Image', Image)
proc_call.execute()  # 执行
# 接收输出变量DieGrey(形参名)
result = proc_call.get_output_iconic_param_by_name('DieGrey')

步骤4:完整代码如图所示。运行文件,能正常显示结果即为成功。
在这里插入图片描述
在这里插入图片描述
------tbc-------
有用请点个👍哦~~😀

<think>好的,我现在需要回答用户关于如何在HALCON中导出训练好的模型的问题。首先,我需要回忆一下HALCON的文档和相关引用内容。用户提供了几个引用,其中引用[4]提到了HALCON的深度学习模型训练流程,包括导出标注信息文件.hdict,但并没有直接说明如何导出模型。不过,根据一般的深度学习框架流程,导出模型通常涉及保存训练好的权重或整个模型结构。 首先,HALCON可能使用特定的函数来保存模型。例如,在训练完成后,可能有一个类似于`write_dl_model`的函数。我需要确认是否存在这样的函数。根据HALCON的惯例,导出模型可能支持多种格式,比如ONNX或HALCON自定义格式。此外,用户可能需要将模型用于不同的环境,比如部署到其他平台,因此导出为通用格式如ONNX会比较重要。 接下来,引用[4]中提到使用预训练模型(backbone),这可能意味着在训练完成后,模型的结构和权重需要被保存下来。HALCON的模型导出步骤可能包括保存为.hdlm文件,这是HALCON Deep Learning Model的缩写。此外,用户可能需要调整模型的版本兼容性,或者导出中间格式以便后续使用。 另外,用户可能需要通过代码示例来了解具体操作步骤。例如,在训练脚本中,添加保存模型的命令。可能的代码结构是使用`write_dl_model`函数,传入模型句柄和文件路径。同时,导出为ONNX格式可能需要额外的参数设置,比如设置导出格式为'onnx'。 还需要考虑模型导出的应用场景,比如目标检测或分类,不同任务可能需要不同的处理。引用[4]中提到的目标检测项目,可能涉及到模型配置的保存,比如轴平行矩阵或自由矩阵的参数。 最后,生成相关问题,可能需要围绕模型导出的后续步骤、使用导出的模型进行预测、兼容性处理等。</think>在HALCON中导出训练完成的深度学习模型,主要通过`write_dl_model`函数实现。以下是具体步骤和文件格式说明: ### 1. 导出模型文件格式 - **HALCON原生格式**:默认导出为`.hdlm`文件(HALCON Deep Learning Model),包含完整的模型结构和权重[^4]。 - **ONNX格式**:支持导出为标准化格式`.onnx`,便于跨平台部署(需HALCON 21.05及以上版本)。 ### 2. 导出方法 #### 步骤1:训练完成后保存模型 ```python * 假设已通过代码完成模型训练 * 获取训练好的模型句柄 read_dl_model ('pretrained.hdlm', DLModelHandle) * 导出为HALCON格式 write_dl_model (DLModelHandle, 'my_model.hdlm') * 导出为ONNX格式(需指定格式参数) set_dl_model_param (DLModelHandle, 'export_batch_size', 1) write_dl_model (DLModelHandle, 'my_model.onnx', 'onnx') ``` #### 步骤2:检查导出内容 - `.hdlm`文件包含: - 网络架构(如ResNet、MobileNet等) - 权重参数 - 预处理配置(归一化参数、输入图像尺寸等) - 后处理配置(目标检测的锚框参数等) ### 3. 关键注意事项 1. **版本兼容性**:导出的`.hdlm`文件需与HALCON运行时版本匹配,否则需使用`set_system('reload_old_dl_model','true')`兼容模式。 2. **输入输出配置**:通过`get_dl_model_param`检查输入层名称和尺寸,确保部署时数据预处理一致。 3. **精简模型**:使用`optimize_dl_model`减少模型体积后再导出。 ### 4. 应用场景示例 导出的模型可用于: - HALCON脚本内预测:`apply_dl_model` - C++/C#集成:通过HALCON/.NET接口调用 - 边缘设备部署:ONNX格式模型可转换至TensorRT等推理引擎 ```python * 模型加载示例 read_dl_model ('my_model.hdlm', DLModelHandle) create_dl_samples_from_images (Image, DLDataSet) apply_dl_model (DLModelHandle, DLDataSet, 'all', 'box_labels', DLResult) ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

8倍

谢谢大佬~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值