BZOJ[3527][Zjoi2014]力 FFT

33 篇文章 0 订阅
8 篇文章 0 订阅

传送门ber~

这题有毒好几次把 i,j i , j 弄反

题目就是让求一个

Ej=i=1j1qi(ij)2i=j+1nqi(ij)2 E j = ∑ i = 1 j − 1 q i ( i − j ) 2 − ∑ i = j + 1 n q i ( i − j ) 2

f(i)=1i2 f ( i ) = 1 i 2 , g(i)=qi g ( i ) = q i ,那么
Ej=i=1j1g(i)f(ji)i=j+1ng(i)f(ji) E j = ∑ i = 1 j − 1 g ( i ) ∗ f ( j − i ) − ∑ i = j + 1 n g ( i ) ∗ f ( j − i )

左面标准的卷积,FFT搞定
右面不是从0开始,FFT搞定不了
那咋整?
g(i)=qni g ′ ( i ) = q n − i
那么 i=j+1ng(i)f(ji) ∑ i = j + 1 n g ( i ) ∗ f ( j − i ) 可以转化为
i=0nj1g(ni1)f(nij1) ∑ i = 0 n − j − 1 g ( n − i − 1 ) ∗ f ( n − i − j − 1 )

Ej=i=0nj1g(i+1)f(nij1) E j = ∑ i = 0 n − j − 1 g ′ ( i + 1 ) ∗ f ( n − i − j − 1 )

转化一个卷积的形式,FFT搞定

当然也可以在开始的时候将多项式平移 n n 位,结果取后n

代码如下:

#include<algorithm>
#include<cstdio>
#include<cmath>
#define N 500050
using namespace std;
const double DFT=2.0,IDFT=-2.0;
const double pi=acos(-1);
struct Complex{
    double x,y;
    Complex(double _=0.0,double __=0.0):x(_),y(__){}
    Complex operator + (Complex b) {return Complex(x+b.x,y+b.y);}
    Complex operator - (Complex b) {return Complex(x-b.x,y-b.y);}
    Complex operator * (Complex b) {return Complex(x*b.x-y*b.y,x*b.y+b.x*y);}
}a[N],b[N];
int n,len;
int pos[N];
inline void FFT(Complex x[],double mode){
    for(int i=0;i<len;i++)
        if(i<pos[i])
            swap(x[i],x[pos[i]]);
    for(int i=2,mid=1;i<=len;i<<=1,mid<<=1){
        Complex wm(cos(2.0*pi/i),sin(mode*pi/i));
        for(int j=0;j<len;j+=i){
            int r=j+mid;
            Complex w(1,0);
            for(int k=j;k<r;k++){
                Complex y=x[k],z=w*x[k+mid];
                x[k]=y+z;x[k+mid]=y-z;
                w=w*wm;
            }
        }
    }
    if(mode==IDFT)
        for(int i=0;i<len;i++)
            x[i].x/=len;
    return;
}

int main(){
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%lf",&a[i].x);
    for(int i=0;i<n-1;i++)
        b[i].x=-1.0/(n-i-1)/(n-i-1);
    for(int i=n;i<n*2-1;i++)
        b[i].x=1.0/(i-n+1)/(i-n+1);
    for(len=1;len<n<<1;len<<=1);
    for(int i=0;i<len;i++){
        pos[i]=pos[i>>1]>>1;
        if(i&1) pos[i]|=len>>1;
    }
    FFT(a,DFT);FFT(b,DFT);
    for(int i=0;i<len;i++) a[i]=a[i]*b[i];
    FFT(a,IDFT);
    for(int i=n-1;i<n*2-1;i++) printf("%f\n",a[i].x);
return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值