前置知识:树的基本概念及性质
为了保证学习效果,请保证已经掌握前置知识之后,再来学习本章节!如果在阅读中遇到困难,也可以回到前面章节查阅。
学习目标
- 掌握图的基本概念
- 掌握图的一些性质
图的概念
基本概念
图 (Graph) 是一个二元组 G=(V(G), E(G))G=(V(G),E(G)) 。其中 V(G)V(G) 是非空集,称为 点集 (Vertex set) ,对于 VV 中的每个元素,我们称其为 顶点 (Vertex) 或 节点 (Node) ,简称 点 ; E(G)E(G) 为 V(G)V(G) 各结点之间边的集合,称为 边集 (Edge set) 。
常用 G=(V,E)G=(V,E) 表示图。
当 V,EV,E 都是有限集合时,称 GG 为 有限图 。
当 VV 或 EE 是无限集合时,称 GG 为 无限图 。
图有多种,包括 无向图 (Undirected graph) , 有向图 (Directed graph) , 混合图 (Mixed graph) 等
若 GG 为无向图,则 EE 中的每个元素为一个无序二元组 (u, v)(u,v) ,称作 无向边 (Undirected edge) ,简称 边 (Edge) ,其中 u, v \in Vu,v∈V 。设 e = (u, v)e=(u,v) ,则 uu 和 vv 称为 ee 的 端点 (Endpoint) 。
若 GG 为有向图,则 EE 中的每一个元素为一个有序二元组 (u, v)(u,v) ,有时也写作 u \to vu→v ,称作 有向边 (Directed edge) 或 弧 (Arc) ,在不引起混淆的情况下也可以称作 边 (Edge) 。设 e = u \to ve=u→v ,则此时 uu 称为 ee 的 起点 (Tail) , vv 称为 ee 的 终点 (Head) ,起点和终点也称为 ee 的 端点 (Endpoint) 。并称 uu 是 vv 的直接前驱, vv 是 uu 的直接后继。
若 GG 为混合图,则 EE 中既有向边,又有无向边。
若 GG 的每条边 e_k=(u_k,v_k)ek=(uk,vk) 都被赋予一个数作为该边的 权 ,则称 GG 为 赋权图 。如果这些权都是正实数,就称 GG 为 正权图 。
图 GG 的点数 \left| V(G) \right|∣V(G)∣ 也被称作图 GG 的 阶 (Order) 。
形象地说,图是由若干点以及连接点与点的边构成的。
图上的关系
点与点——邻接
在无向图 G = (V, E)G=(V,E) 中,对于两顶点 uu 和 vv ,若存在边 (u, v)(u,v) ,则称 uu 和 vv 是 相邻(邻接)的 。
一个顶点 v \in Vv∈V 的