第三十三章:图的基本概念与性质

 前置知识:树的基本概念及性质

为了保证学习效果,请保证已经掌握前置知识之后,再来学习本章节!如果在阅读中遇到困难,也可以回到前面章节查阅。

学习目标

  • 掌握图的基本概念
  • 掌握图的一些性质

图的概念

基本概念

图 (Graph) 是一个二元组 G=(V(G), E(G))G=(V(G),E(G)) 。其中 V(G)V(G) 是非空集,称为 点集 (Vertex set) ,对于 VV 中的每个元素,我们称其为 顶点 (Vertex) 或 节点 (Node) ,简称  ; E(G)E(G) 为 V(G)V(G) 各结点之间边的集合,称为 边集 (Edge set) 。

常用 G=(V,E)G=(V,E) 表示图。

当 V,EV,E 都是有限集合时,称 GG 为 有限图 。

当 VV 或 EE 是无限集合时,称 GG 为 无限图 。

图有多种,包括 无向图 (Undirected graph) , 有向图 (Directed graph) , 混合图 (Mixed graph) 等

若 GG 为无向图,则 EE 中的每个元素为一个无序二元组 (u, v)(u,v) ,称作 无向边 (Undirected edge) ,简称 边 (Edge) ,其中 u, v \in Vu,v∈V 。设 e = (u, v)e=(u,v) ,则 uu 和 vv 称为 ee 的 端点 (Endpoint) 。

若 GG 为有向图,则 EE 中的每一个元素为一个有序二元组 (u, v)(u,v) ,有时也写作 u \to vu→v ,称作 有向边 (Directed edge) 或 弧 (Arc) ,在不引起混淆的情况下也可以称作 边 (Edge) 。设 e = u \to ve=u→v ,则此时 uu 称为 ee 的 起点 (Tail) , vv 称为 ee 的 终点 (Head) ,起点和终点也称为 ee 的 端点 (Endpoint) 。并称 uu 是 vv 的直接前驱, vv 是 uu 的直接后继。

若 GG 为混合图,则 EE 中既有向边,又有无向边。

若 GG 的每条边 e_k=(u_k,v_k)ek​=(uk​,vk​) 都被赋予一个数作为该边的  ,则称 GG 为 赋权图 。如果这些权都是正实数,就称 GG 为 正权图 。

图 GG 的点数 \left| V(G) \right|∣V(G)∣ 也被称作图 GG 的 阶 (Order) 。

形象地说,图是由若干点以及连接点与点的边构成的。

图上的关系

点与点——邻接

在无向图 G = (V, E)G=(V,E) 中,对于两顶点 uu 和 vv ,若存在边 (u, v)(u,v) ,则称 uu 和 vv 是 相邻(邻接)的 。

一个顶点 v \in Vv∈V 的 邻域 (Neighborhood) 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
作者: 谢惠民 出版社: 高等教育 出版年: 2004-1 页数: 408 定价: 33.90元 装帧: 平装 ISBN: 9787040129410 内容简介 · · · · · · 《数学分析习题课讲义(下册)》是教育部“国家理科基地创建名牌课程项目”的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。《数学分析习题课讲义(下册)》以编著者们近20年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲题中强调启发式和逐步深入,在习题的选取中致力于对传统内容的更新、补充与层次化。 《数学分析习题课讲义(下册)》分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 《数学分析习题课讲义(下册)》可作为高等院校理工科教师和学生在数学分析习题课方面的教材或参考书,也可以作为研究生入学考试和其他人员的数学分析辅导书。 目录 · · · · · · 第十三章 数项级数 513.1 无穷级数的基本概念 13.1.1 无穷级数的多种视角 13.1.2 思考题 §13.2 正项级数 13.2.1 比较判别法的一般形式 13.2.2 比较判别法的特殊形式 13.2.3 其他判别法 13.2.4 例题 13.2.5 练习题 §13.3 一般项级数 13.3.1 一般项级数的敛散性判别法 13.3.2 一般项级数的基本性质 13.3.3 例题 13.3.4 练习题 §13.4 无穷乘积 13.4.1 基本内容 13.4.2 例题 13.4.3 练习题 §13.5 对于教学的建议 13.5.1 学习要点 13.5.2 参考题 第十四章 函数项级数与幂级数 514.1 一致收敛性及其判别法 14.1.1 基本内容 14.1.2 例题 14.1.3 练习题 §14.2 和函数与极限函数的性质 14.2.1 三分法与极限顺序交换原理 14.2.2 例题 14.2.3 准一致收敛与控制收敛定理 14.2.4 练习题 §14.3 幂级数的收敛域与和函数 14.3.1 幂级数的基本理论 14.3.2 思考题 14.3.3 例题 14.3.4 练习题 §14.4 函数的幂级数展开 14.4.1 Taylor级数与函数的幂级数展开 14.4.2 将函数展开为幂级数的基本方法 14.4.3 例题 14.4.4 练习题 §14.5 对于教学的建议 14.5.1 学习要点 15.5.2 参考题 第十五章 Fourier级数 §15.1 Fourier系数 15.1.1 Fourier系数的计算公式 15.1.2 Fourier系数的渐近性质 15.1.3 Fourier系数的几何意义 15.1.4 例题 15.1.5 练习题 515.2 Fourier级数的收敛性 15.2.1 Dirichler核和点收敛性 15.2.2 Gibbs现象 15.2.3 Fourier级数的?eshro求和 15.2.4 Fourier级数的平方平均收敛 15.2.5 Fourier级数的一致收敛性 15.2.6 例题 15.2.7 练习题 §15.3 对于教学的建议 15.3.1 学习要点 15.3.2 参考题 第十六章 无穷级数的应用 §16.1 积分计算 16.1.1 关于逐项积分的补充命题 16.1.2 例题 16.1.3 练习题 §16.2 级数求和计算 16.2.1 级数求和法 16.2.2 例题 16.2.3 练习题 §16.3 连续函数的逼近定理 16.3.1 核函数方法 16.3.2 Bernstein证明的概率解释 16.3.3 逼近定理的一个初等证明 16.3.4 逼近定理的其他证明 16.3.5 逼近定理的应用举例 16.3.6 练习题 16.4 用级数构造函数 16.4.1 处处连续处处不可微的函数 16.4.2 填满正方形的连续曲线 §16.5 对于教学的建议 16.5.1 学习要点 16.5.2 参考题 第十七章 高维空间的点集与基本定理 §17.1 点与点集的定义及其基本性质 17.1.1 点的分类及其性质 17.1.2 集合的分类及其性质 17.1.3 思考题 17.1.4 练习题 §17.2 R中的几个基本定理 17.2.1 综述 17.2.2 例题 17.2.3 练习题 §1.7.3 对于教学的建议 17.3.1 学习要点 17.3.2 参考题 第十八章 多元函数的极限与连续 518.1 多元函数的极限 18.1.1 重极限 18.1.2 累次极限 18.1.3 证明函数的重极限不存在的常用方法 18.1.4 思考题 18.1.5 关于累次极限换序 18.1.6 练习题 §18.2 多元函数的连续性 18.2.1 定义与基本性质 18.2.2 紧集上多元连续函数的性质 18.2.3 多元连续函数的介值定理 18.2.4 向量值函数 18.2.5 练习题 §18.3 对于教学的建议 18.3.1 学习要点 18.3.2 参考题 第十九章 偏导数与全微分 §19.1 偏导数 19.1.1 偏导数的定义 19.1.2 偏导数与连续 19.1.3 高阶偏导数 §19.2 全微分 19.2.1 全微分的定义与基本性质 19.2.2 多元函数的连续性、偏导数存在性及可微性之间的关系 19.2.3 思考题 19.2.4 练习题 §19.3 复合函数求导链式法则 19.3.1 复合函数偏导数的链式法则 19.3.2 例题 19.3.3 齐次函数 19.3.4 练习题 519.4.向量值函数的微分学定理 19.4.1 有限增量公式与拟微分平均值定理 19.4.2 练习题 §19.5 对于教学的建议 19.5.1 学习要点 19.5.2 参考题 第二十章 隐函数存在定理与隐函数求导 520.1 一个方程的情形 20.1.1 隐函数存在定理 20.1.2 隐函数求导 20.1.3 思考题 20.1.4 练习题 §20.2 隐函数组 20.2.1 存在定理 20.2.2 思考题 20.2.3 求已知函数组所确定的隐函数组的导数 20.2.4 存在定理的证明 20.2.5 练习题 §20.3 变量代换问题 20.3.1 仅变换自变量的情形 20.3.2 自变量与函数同时变换的情形 20.3.3 练习题 §20.4 隐函数及隐函数组的整体存在性 §20.5 对于教学的建议 20.5.1 学习要点 20.5.2 参考题 第二十一章 偏导数的应用 §21.1 偏导数在几何上的应用 21.1.1 曲线的切向量、切线与法平面 21.1.2 曲面的法向量、法线和切平面 21.1.3 曲线的夹角、曲面的夹角 21.1.4 练习题 §21.2 方向导数与梯度 21.2.1 方向导数 21.2.2 梯度 21.2.3 练习题 §21.3 Taylor公式与极值问题 21.3.1 Taylor公式 21.3.2 极值问题 21.3.3 最大最小值问题 21.3.4.练习题 §21.4 条件极值与条件最值 21.4.1 条件极值 21.4.2 条件最值 21.4.3 隐函数的极值 21.4.4 练习题 §21.5 高维Rolle定理 §21.6 对于教学的建议 21.6.1 学习要点 21.6.2 参考题 第二十二章 重积分 §22.1 二重积分的概念 22.1.1 二重积分的定义 22.1.2 可积函数类 22.1.3 思考题 22.1.4 练习题 §22.2 二重积分的计算 22.2.1 矩形区域上的二重积分 22.2.2 一般区域上的二重积分 22.2.3 二重积分的变量替换 22.2.4 练习题 §22.3 三重积分,n重积分 22.3.1 三重积分在直角坐标系中的计算 …… 第二十三章 含参变量积分 第二十四章 曲线积分 第二十五章 曲面积分 第二十六章 场论初步 参考提示 参考文献 中文名词索引 外文名词索引
### 回答1: 《数据挖掘概念与技术》是一本经典的数据挖掘教材,第三版更新了很多新的内容和技术。本书总共分为十三个章节,涵盖了数据挖掘的基础知识、预处理、分类、聚类、异常检测、关联规则挖掘、Web挖掘、文本挖掘、时间序列挖掘、空间数据挖掘、形挖掘等多个方面。每个章节都包含了实例、案例和应用,让读者能够更好地理解和应用数据挖掘技术。 第三版中还加入了一些新的技术和应用,如深度学习、大数据挖掘、基于的分析等。此外,本书还强调了模型评估和选择的重要性,给出了更多的评估方法和工具。 总之,《数据挖掘概念与技术》第三版是一本全面而深入的数据挖掘教材,对于想要深入学习和应用数据挖掘技术的读者来说,是一本不可错过的好书。 ### 回答2: 《数据挖掘概念与技术第三版pdf》是一本涵盖数据挖掘的基本概念、技术和应用的重要学术著作。这本书是作者Jiawei Han、Micheline Kamber和Jian Pei三位知名学者在数据挖掘领域的大量研究基础上所编写而成的。 在这本书中,作者首先介绍了数据挖掘的概念、意义以及数据挖掘技术的基本体系结构。接着,他们详细介绍了包括分类、聚类、关联规则挖掘等在内的数据挖掘技术,以及常用的数据挖掘算法和方法。另外,他们还特别介绍了文本挖掘和社交网络分析等领域的数据挖掘技术。 此外,该书还介绍了数据仓库和OLAP以及数据挖掘的应用等方面的知识。此外,书中还涉及了与数据挖掘紧密相关的数据预处理和特征选择以及评价指标等内容。 总之,《数据挖掘概念与技术第三版pdf》是数据挖掘领域的权威参考书,对于很多大数据处理专业学习者和从业者来说都是一本必备的教材。无论是在学术研究上,还是在实际应用场景下,该书的知识都能够为读者提供很大的帮助。 ### 回答3: 《数据挖掘概念与技术第三版pdf》是一本关于数据挖掘的经典教材,该书由三位著名的数据挖掘专家Jiawei Han、Micheline Kamber和Jian Pei合作编写。书中介绍了数据挖掘的基本概念、方法和技术,包括数据预处理、聚类分析、分类分析、关联规则挖掘等。 在数据挖掘的实践中,数据预处理是一个关键的环节,也是决定分析结果质量的一个关键因素。该书中首先详细介绍了数据预处理的各个流程,如数据清洗、数据集成、数据转换和数据规约。 除此之外,该书还详细讲解了聚类、分类、关联规则挖掘等分析方法的原理、特点和应用。在聚类分析中,书中介绍了基于距离的聚类和基于密度的聚类;在分类分析中,介绍了朴素贝叶斯分类器、决策树分类器和神经网络分类器等方法;在关联规则挖掘中,介绍了Apriori算法、FP-growth算法等经典算法。 该书内容丰富、深入浅出,适合数据挖掘初学者和从业者阅读。此外,附带的数据集和程序代码也方便读者进行实践操作,更好地理解书中的理论知识。总之,《数据挖掘概念与技术第三版pdf》是一本非常实用的数据挖掘教材,值得推荐。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值