展开
题目描述
瑞文戴尔有 nn 个亭子,编号为 1 \sim n1∼n,每两个亭子之间可能有一条或多条路,并已知这 mm 条路的长度。现有 QQ 次询问,询问给出两个亭子编号 u,vu,v,求从 uu 到 vv 最短路的长度。
PS.两个亭子之间直接连通的路不一定是最短的路。
输入格式
本题有多组数据,对于每组数据:
输入第一行给出两个整数 n,mn,m,(2≤n≤200, m≤n * n2≤n≤200,m≤n∗n),接下来 mm 行,每行三个整数 a,b,wa,b,w,表示 aa 到 bb 之间有一条长度为 ww 的通路(双向的)。
接下来一行为一个整数 QQ,表示接下来有 QQ 次查询,Q≤n * n / 2Q≤n∗n/2。
接下来 QQ 行,每行两个整数 u,vu,v,表示查询从 uu 到 vv 的最短距离。
当 mm 和 nn 都为 00 时输入结束。
输出格式
对于每个查询,输出 uu 到 vv 之间的最短距离。
样例
输入数据#1
3 3
1 2 100
1 3 300
2 3 50
2
2 1
1 3
0 0
Copy
输出数据#1
100
150
题解:Floyd
注。多组输入输出
Copy
/*WHX*/
#include<bits/stdc++.h>
using namespace std;
int f[2021][2201];
int n,m;
int main()
{
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
while(cin>>n>>m)
{
if(n==0&&m==0) return 0;
memset(f,0x3f,sizeof f);
for(int i=1;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
f[x][y]=f[y][x]=min(f[x][y],z);
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
}
}
}
int q;
cin>>q;
while(q--)
{
int u,v;
cin>>u>>v;
cout<<f[u][v]<<endl;
}
}
}