瑞文戴尔

该博客讨论了瑞文戴尔中n个亭子之间的最短路径问题,利用Floyd算法解决多组查询中两个亭子间的最短距离。博客提供了输入输出格式以及样例数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开

题目描述

瑞文戴尔有 nn 个亭子,编号为 1 \sim n1∼n,每两个亭子之间可能有一条或多条路,并已知这 mm 条路的长度。现有 QQ 次询问,询问给出两个亭子编号 u,vu,v,求从 uu 到 vv 最短路的长度。

PS.两个亭子之间直接连通的路不一定是最短的路。

输入格式

本题有多组数据,对于每组数据:

输入第一行给出两个整数 n,mn,m,(2≤n≤200, m≤n * n2≤n≤200,m≤n∗n),接下来 mm 行,每行三个整数 a,b,wa,b,w,表示 aa 到 bb 之间有一条长度为 ww 的通路(双向的)。

接下来一行为一个整数 QQ,表示接下来有 QQ 次查询,Q≤n * n / 2Q≤n∗n/2。

接下来 QQ 行,每行两个整数 u,vu,v,表示查询从 uu 到 vv 的最短距离。

当 mm 和 nn 都为 00 时输入结束。

输出格式

对于每个查询,输出 uu 到 vv 之间的最短距离。

样例

输入数据#1

3 3
1 2 100
1 3 300
2 3 50
2
2 1
1 3
0 0

Copy

输出数据#1

100
150

题解:Floyd

注。多组输入输出

Copy

/*WHX*/
#include<bits/stdc++.h>
using namespace std;
int f[2021][2201];
int n,m;
int main()
{
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	while(cin>>n>>m)
	{
		if(n==0&&m==0) return 0;
		memset(f,0x3f,sizeof f);
		for(int i=1;i<=m;i++)
		{
			int x,y,z;
			cin>>x>>y>>z;
			f[x][y]=f[y][x]=min(f[x][y],z);
		}
		for(int k=1;k<=n;k++)
		{
			for(int i=1;i<=n;i++)
			{
				for(int j=1;j<=n;j++)
				{
					f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
				}
			}
		}
		int q;
		cin>>q;
		while(q--)
		{
			int u,v;
			cin>>u>>v;
			
			cout<<f[u][v]<<endl;
		}	
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值