第12周项目4 -利用遍历思想求解图问题(2)

问题及代码:

/*      
* Copyright (c)2016,烟台大学计算机与控制工程学院      
* All rights reserved.      
* 文件名称:4.cpp      
* 作    者:王修文      
* 完成日期:2016年11月17日      
* 版 本 号:v1.0       
*问题描述:假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。  
  (1)求不带权连通图G中从顶点u到顶点v的一条最短路径。  
  (2)求不带权连通图G中,距离顶点v最远的顶点k    
*输入描述:无      
*程序输出:测试数据      
*/     


头文件和源文件详见图算法库


1.最短路径

问题:求不带权连通图G中从顶点U到顶点V一条最短的路径。


测试图如下:



main函数:

#include "graph.h"  
  
typedef struct  
{  
    int data;                   //顶点编号  
    int parent;                 //前一个顶点的位置  
} QUERE;                        //非环形队列类型  
  
void ShortPath(ALGraph *G,int u,int v)  
{  
    //输出从顶点u到顶点v的最短逆路径  
    ArcNode *p;  
    int w,i;  
    QUERE qu[MAXV];             //非环形队列  
    int front=-1,rear=-1;       //队列的头、尾指针  
    int visited[MAXV];  
    for (i=0; i<G->n; i++)      //访问标记置初值0  
        visited[i]=0;  
    rear++;                     //顶点u进队  
    qu[rear].data=u;  
    qu[rear].parent=-1;  
    visited[u]=1;  
    while (front!=rear)         //队不空循环  
    {  
        front++;                //出队顶点w  
        w=qu[front].data;  
        if (w==v)               //找到v时输出路径之逆并退出  
        {  
            i=front;            //通过队列输出逆路径  
            while (qu[i].parent!=-1)  
            {  
                printf("%2d ",qu[i].data);  
                i=qu[i].parent;  
            }  
            printf("%2d\n",qu[i].data);  
            break;  
        }  
        p=G->adjlist[w].firstarc;   //找w的第一个邻接点  
        while (p!=NULL)  
        {  
            if (visited[p->adjvex]==0)  
            {  
                visited[p->adjvex]=1;  
                rear++;             //将w的未访问过的邻接点进队  
                qu[rear].data=p->adjvex;  
                qu[rear].parent=front;  
            }  
            p=p->nextarc;           //找w的下一个邻接点  
        }  
    }  
}  
  
int main()  
{  
    ALGraph *G;  
    int A[9][9]=  
    {  
        {0,1,1,0,0,0,0,0,0},  
        {0,0,0,1,1,0,0,0,0},  
        {0,0,0,0,1,1,0,0,0},  
        {0,0,0,0,0,0,1,0,0},  
        {0,0,0,0,0,1,1,0,0},  
        {0,0,0,0,0,0,0,1,0},  
        {0,0,0,0,0,0,0,1,1},  
        {0,0,0,0,0,0,0,0,1},  
        {0,0,0,0,0,0,0,0,0}  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 9, G);  
    ShortPath(G,0,7);  
    return 0;  
}



运行结果:



2、最远顶点

问题:求不带权连通图G中,距离顶点V最远的顶点K


测试图如下:


main函数:

#include <stdio.h>  
#include <malloc.h>  
#include "graph.h"  
  
int Maxdist(ALGraph *G,int v)  
{  
    ArcNode *p;  
    int i,j,k;  
    int Qu[MAXV];               //环形队列  
    int visited[MAXV];              //访问标记数组  
    int front=0,rear=0;             //队列的头、尾指针  
    for (i=0; i<G->n; i++)          //初始化访问标志数组  
        visited[i]=0;  
    rear++;  
    Qu[rear]=v;                 //顶点v进队  
    visited[v]=1;               //标记v已访问  
    while (rear!=front)  
    {  
        front=(front+1)%MAXV;  
        k=Qu[front];                //顶点k出队  
        p=G->adjlist[k].firstarc;       //找第一个邻接点  
        while (p!=NULL)             //所有未访问过的相邻点进队  
        {  
            j=p->adjvex;            //邻接点为顶点j  
            if (visited[j]==0)          //若j未访问过  
            {  
                visited[j]=1;  
                rear=(rear+1)%MAXV;  
                Qu[rear]=j; //进队  
            }  
            p=p->nextarc;           //找下一个邻接点  
        }  
    }  
    return k;  
}  
  
int main()  
{  
    ALGraph *G;  
    int A[9][9]=  
    {  
        {0,1,1,0,0,0,0,0,0},  
        {0,0,0,1,1,0,0,0,0},  
        {0,0,0,0,1,1,0,0,0},  
        {0,0,0,0,0,0,1,0,0},  
        {0,0,0,0,0,1,1,0,0},  
        {0,0,0,0,0,0,0,1,0},  
        {0,0,0,0,0,0,0,1,1},  
        {0,0,0,0,0,0,0,0,1},  
        {0,0,0,0,0,0,0,0,0}  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 9, G);  
    printf("离顶点0最远的顶点:%d",Maxdist(G,0));  
    return 0;  
} 

 运行结果:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值