评价模型中熵值法Excel和Python实现

本文介绍了熵值法作为计算指标权重的一种经典算法,详细阐述了其计算步骤,包括数据标准化、比重计算、熵值计算、差异系数和权重计算。并分别提供了Python和Excel两种实现方式,通过实例演示了如何使用这两种工具进行权重计算。
摘要由CSDN通过智能技术生成

  因为项目需要,要用分数的形式评价用户对某个产品的喜好程度,其中的指标权重确定用熵值法计算。在网上搜集了些资料,再自己捣腾了一下分别用Excel和Python的方法来实现。

一、熵值法介绍

  熵值法是计算指标权重的经典算法之一,它是指用来判断某个指标的离散程度的数学方法。离散程度越大,即信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。根据熵的特性,通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。

二、计算步骤

1.数据标准化

数据为m*n的矩阵,其中n为特征数,m为记录数
在这里插入图片描述
按列标准化
在这里插入图片描述

2.计算第j项指标下第i个记录所占比重

在这里插入图片描述

3.计算第j项指标的熵值

在这里插入图片描述

4.计算第j项指标的差异系数

在这里插入图片描述

5.计算第j项指标的权重

在这里插入图片描述

三、Python实现

import pandas as pd
import numpy as np
from numpy import array

# 读取数据
doctor = pd.read_csv(r'D:\WorkSpace\PythonWork\Python学习\数据挖掘Baseline\熵权法实例.csv')
index = doctor['科室']
doctor = doctor.drop(['科室'],axis = 1)

在这里插入图片描述

#定义熵值法函数
def cal_weight(x):
    '''熵值法计算变量的权重
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值