建模笔记——熵值法&熵权法(python)

熵值法&熵权法-python实现

时隔老久,重新整理一下笔记。仅供个人自学使用,读者自行参考

Reference:

存了不知道多久的本地文件

司守奎,python数学实验与建模,2020

https://www.zhihu.com/question/357680646/answer/943628631

https://www.jianshu.com/p/638cb1eaec43

https://blog.csdn.net/mycafe_/article/details/79285762?biz_id=102&utm_term=%E7%86%B5%E6%9D%83%E6%B3%95%E5%92%8C%E7%86%B5%E5%80%BC%E6%B3%95%E4%B8%80%E6%A0%B7%E5%90%97&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-4-79285762&spm=1018.2118.3001.4187

先说区别

一开始迷惑的不行以为是两个东西,结果比照很多资料发现这好像就是同一个玩意,没懂当初翻译的搞两个名字干嘛,捂脸。

基本原理

在信息论中,熵是对不确定性的一种度量。一般来说,信息量越大,不确定性就越小,熵也就越小,信息的效用值越大;信息量越小,不确定性越大,熵也越大,信息的效用值越小。而熵值法就是通过计算各指标观测值的信息熵。根据各指标的相对变化程度对系统整体的影响来确定指标权重的一种赋权方法。

基本步骤

  1. 数据标准化

    指标的标准化处理:异质指标同质化

    由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,我们先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令在这里插入图片描述
    ,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好) ,因此,对于高低指标我们用不同的算法进行数据

    标准化处理。其具体方法如下:

    正向指标: 在这里插入图片描述
    负向指标:

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值