中文文本标注工具 调研

附录:几个开源文本标注工具
• IEPY 


整个工程比较完整,有用户管理系统。前端略重,对用户不是非常友好。 

代码:https://github.com/machinalis/iepy 

说明:http://iepy.readthedocs.io/en/latest/index.html

• DeepDive (Mindtagger)


△ Screenshot of Mindtagger precision task in progress 

前端比较简单,用户界面友好。 
介绍:http://deepdive.stanford.edu/labeling 

前端代码:https://github.com/HazyResearch/mindbender 

将 DeepDive 的 corenlp 部分转为支持中文的代码尝试:

https://github.com/SongRb/DeepDiveChineseApps 

https://github.com/qiangsiwei/DeepDive_Chinese 

https://github.com/mcavdar/deepdive/commit/6882178cbd38a5bbbf4eee8b76b1e215537425b2

• BRAT


介绍:http://brat.nlplab.org/index.html  

在线试用:http://weaver.nlplab.org/~brat/demo/latest/#/ 

代码:https://github.com/nlplab/brat

• SUTDAnnotator


用的不是网页前端而是 pythonGUI,但比较轻量。  

代码:https://github.com/jiesutd/SUTDAnnotator 

Paper:https://github.com/jiesutd/SUTDAnnotator/blob/master/lrec2018.pdf

• Snorkel


Page: https://hazyresearch.github.io/snorkel/ 

Github: https://github.com/HazyResearch/snorkel 

Demo Paper: https://hazyresearch.github.io/snorkel/pdfs/snorkel_demo.pdf

• Slate


Code: https://bitbucket.org/dainkaplan/slate/   

Paper: http://www.jlcl.org/2011_Heft2/11.pdf
• Prodigy


和著名的 spacy 是一家做的。 

Website: https://prodi.gy/docs/ 

Blog: https://explosion.ai/blog/prodigy-annotation-tool-active-learning
相关链接

[1] Prodigy 文档:https://prodi.gy/docs/

[2] Prodigy demo:https://prodi.gy/demo

[3] 系统配置参考:

https://github.com/crownpku/Rasa_NLU_Chi/tree/master/sample_configs
 

主动学习的智能标注算法

流程: 

1. 用户标一个label;

2. 主动学习的后台算法分为 online 和 offline 部分。online 部分即时更新模型,可使用诸如 SVM、bag of words 等尽可能快的传统方法;offline 部分当标注数据积累到一定数量时更新模型,可使用准确度较高的深度学习模型; 

3. 模型更新后,对尽可能多的 example 做预测,将确信度排序,取确信度最低的一个 example 作为待标注例子。重复 1 的过程。 

可以想象如果模型训练得好的话,这个过程将直接忽略掉确信度最大的那些例子,而把所有重点放在分类边界上的那些确信度小的例子。这样可以尽算法所能减少用户端的人工工作量。 

online 与 offline 模型互相协作,与用户手动标注的过程一起不断迭代;在最终标注任务完成之后,offline 模型可以重新在所有标注数据上重新训练,以达到最好的模型效果。 

显而易见的友好标注前端

用户标注的界面应该尽可能符合直觉,让用户完全聚焦在当前的标注任务上。 Prodigy 给了一个非常好的 demo[2],每一次的标注只需要用户解决一个 case 的问题。以文本分类为例,对于算法给出的分类结果,只需要点击“正确”提供正样本,“错误”提供负样本,“略过”将不相关的信息滤除,“Redo”让用户撤回操作,四个功能键以最简模式让用户进行标注操作。 

真正应用中,应该还要加入一个用户自己加入标注的交互方式,比如用户可以高亮一个词然后选择是“公司”,或者链接两个实体选择他们的关系等等。

以上是个人觉得的一个智能中文文本标注工具的最大亮点。算法本身还有很多细节需要思考,比如 online 机器学习算法与 offline 深度学习算法的协作、中文 NLP 的特征提取与模型构建、正则规则的引入、word embedding 的训练和使用等等。

系统本身还要考虑后台存储(SQLite?)和数据导入导出,前端框架选型和开发,前后端交互(django? flask? RestAPI?)等等的问题。下面是 Prodigy 的简单架构图。

我们希望专注于中文文本标注的功能。前期我们想实现三种中文 NLP 任务的标注工具:中文命名实体识别,中文关系识别,中文文本分类。未来如果有更多如中文图片问答、中文图片描述之类的任务,我们可以再研究加入图片标注这一块。

希望这个工具的开发会是以中文社区的开源协作方式,为整个中文 NLP 的开源生态做出一点贡献。
FAQ
1. 待标注数据集如何分割?

应该分为按句子、按段落、按文章三种,写入配置文件由用户选择。 原因是命名实体识别与关系抽取可能按句子或者段落为单位给用户标注比较合适;同时可能用户会有全文章分类的需求,需要给出全文。 

2. 为什么要使用 online?

用户标注数据 + offline 标注数据,为什么还要使用 online model 更新数据呢?原因是 offline 的模型往往在全量数据上重新学习,也很可能需要使用深度学习模型,训练的速度会很慢。而 active learning 的人机迭代过程要求模型给出几乎实时的 stream 级别的训练和推断速度,这时候就需要 online model 来先行更新数据。 

3. 使用什么机制触发 offline model? 

这也可以是写入配置文件的参数。一种是用户标够了 100 个或提前设置好的足够多的新的数据,就可以启用 offline model 进行训练;另一种是给用户一个按钮,用户可以点击启动后台的 offline 模型训练并给出进度条。 

4. 系统使用什么格式的配置文件? 

推荐 json 格式的配置文件。请参考一个例子在这里[3]。

5. AIgo Factory 是什么?和 User Instance 里面的部分是不是有点重合?

Algo factory 是算法的代码模块,你可以想象一堆 tensorflow 或者 sklearn 的代码;而 user instance 是 config 文件与模型参数,是一堆用户生成的 json 文件和模型文件。algo factory 是可以不同 user instance 传入参数复用的,而每一个 user instance 代表了一个用户任务的实例。

这样设计的目的,是尽可能使系统可复用部分模块化,而抽出用户具体任务的配置与数据单独存储管理。
https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/78560121

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值