NLP数据标注工具调研

本文介绍了多个开源的数据标注工具,特别关注于中文事件抽取任务。BRAT和YEDDA被推荐用于中文领域的事件抽取样本标注,两者支持中文标注且功能涵盖事件抽取。BRAT具备扩展性,而YEDDA基于主动学习。其他如Prodigy专注于英文,Chinese-Annotator为中文命名实体和关系识别设计,Doccano支持多语言标注。选择合适的工具能有效减少人工标注时间和错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中文nlp领域比较困扰的点在于缺乏数据,尤其像事件抽取这样的任务,人工标注非常耗时费力,而且很容易出错,所以想要搭建一个针对事件抽取的标注系统。在调研如何造轮子时,发现有些开源工具或许可以用,或许可以避免这部分的时间消耗。

一、开源数据标注工具

1. BRAT

2. prodigy

  • 标注任务支持:实体抽
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值