「NOI2018」冒泡排序

17 篇文章 0 订阅
2 篇文章 0 订阅

Description

给定1~n的排列p,求所有长度为n的字典序严格大于p的排列中有多少个能被拆分成不超过两个上升子序列。(其实原题是,求有多少个排列进行冒泡排序后交换次数恰为一个下界 121in|ipi| 1 2 ∑ 1 ≤ i ≤ n | i − p i | ,这和上面是等价的,可以通过打表找规律发现)

n<=6e5

Analysis

我写的是O(n)做法,不知道为什么有些人要用树状数组==

首先考虑对于一个确定的排列,怎么将其拆成两个递增序列。一个显然的贪心策略是,尽量放第一个,如果不能再放第二个,并且发现,这样有一些数字会被限制必须按顺序从小到大出现,且一定填入第二个序列。

一个自然的想法是,枚举在位置pos处第一次使得 a[pos]>p[pos] a [ p o s ] > p [ p o s ] (言下之意是 a[1..pos1]=p[1..pos1] a [ 1.. p o s − 1 ] = p [ 1.. p o s − 1 ] ),然后后面的位就解放了。后面填放的方案数,容易发现,只跟未填的数的个数和被限制的数的个数有关,而与这些数的具体大小无关。

那么可以设一个dp, f[i][j] f [ i ] [ j ] 表示剩 i i 个数待填,j个被限制,填完的方案数。
f[i][j]=f[i1][j1]+kjf[i1][k] f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + ∑ k ≥ j f [ i − 1 ] [ k ]
转移分别表示填一个限制数,填一个非限制数
显然可以优化成
f[i][j]=f[i1][j1]+f[i][j+1] f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + f [ i ] [ j + 1 ]
于是我们得到了 O(n2) O ( n 2 ) 的算法。

考虑继续优化dp
如果有一定组合功底,或者观察(打表)发现 f[i][0] f [ i ] [ 0 ] 就是卡特兰数,能够感受出应该往组合意义上思考。
然后就是套路了,转化成不能越过某条直线的格路径问题,任意 f f 可以用两个组合数相减得到!

还有最后一个问题,对于p[pos],我们不能暴力枚举 a[pos] a [ p o s ]
可以发现,这相当于是一堆组合数相加,使用某一个组合恒等式把它化成一个组合数的形式。
然后就做完了,时空复杂度均为O(n)

Codes

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,b,a) for(int i=b;i>=a;i--)
#define mset(a,x) memset(a,x,sizeof(a))
template<typename T> bool chkmin(T &a,const T &b) {return b<a?a=b,1:0;}
template<typename T> bool chkmax(T &a,const T &b) {return b>a?a=b,1:0;}
using namespace std;
typedef long long ll;
char ch;
int read(){int n=0,p=1;for(ch=getchar();ch<'0' || '9'<ch;ch=getchar())if(ch=='-') p=-1;for(;'0'<=ch && ch<='9';ch=getchar()) n=n*10+ch-'0';return n*p;}
const int N=2e6+5,mo=998244353;
ll qmi(ll x,ll n)
{
    ll t=1;
    for(x%=mo;n;n>>=1,x=x*x%mo) if(n&1) t=t*x%mo;
    return t;
}
int n,a[N];
ll fac[N<<1],inv[N<<1];
ll C(ll m,ll n)
{
    return (m<n || n<0)?0:fac[m]*inv[n]%mo*inv[m-n]%mo;
}
ll G(ll i,ll j)
{
    j=i-j;
    return (C(i+j-1,j)-C(i+j-1,j-2)+mo)%mo;
}
bool bz[N];
int main()
{
    fac[0]=inv[0]=1;
    fo(i,1,4000000) fac[i]=fac[i-1]*i%mo;
    inv[4000000]=qmi(fac[4000000],mo-2);
    fd(i,3999999,1) inv[i]=inv[i+1]*(i+1)%mo;
    for(int cas=read();cas;cas--)
    {
        n=read(); 
        fo(i,1,n) a[i]=read();
        //g[i][j] i个待填,j个保留 
        /*g[0][0]=1;
        fo(i,1,n)
            fd(j,i,0) g[i][j]=(g[i-1][j-1]+g[i][j+1])%mo;//*/
        ll ans=0;
        mset(bz,0);
        int t1=0,t2=1,j=0;//ERR 2:t2=0
        fo(i,1,n)
        {
            //fo(k,max(a[i]+1,t1+1),n)
            //  ans=(ans+g[n-i][j+k-t1-1])%mo;
            int x=j+max(a[i]+1,t1+1)-t1-1,y=j+n-t1-1;
            ans=(ans+G(n-i+1,x+1)-G(n-i+1,y+2)+mo)%mo;
            if(a[i]>t1) j+=a[i]-t1-1,t1=a[i];//ERR 1:t1=a[i],j+=a[i]-t1-1;
            else
            {
                while(bz[t2]) ++t2;
                if(a[i]!=t2) break;
                --j;
            }
            bz[a[i]]=1;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值