目录
一.栈
栈的特点是先进后出,只有一个端口提供进出,所以不能像顺序表和链表一样自由插入和删除元素,只能从栈顶开始插入和删除,所以需要栈顶的移动
栈顶不用指针来表示是因为不需要,栈顶只是一个虚拟的位置,用来表示一个界限
1.声明
#include<iostream>
using namespace std;
#define TRUE 1
#define FALSE 0
class Stack
{
public:
int top;//栈顶
int maxSize;//栈的最大长度
int* link;//指向栈的指针
};
2.初始化
//初始化
void Creater(Stack& S, int max_Size)
{
S.top = -1;//栈顶为-1即为空栈
S.maxSize = max_Size;
S.link = new int (max_Size);//在堆区创建一个最大长度大小的栈
}
栈由栈顶的位置来判断是否为空栈和满栈
3.获取栈顶元素
//获取栈顶元素
int Top(Stack& S)
{
//判断是否为空栈
if (S.top == -1)
{
return FALSE;
}
int x;//由x来接收栈顶
x = S.link[S.top];
return x;
}
4.插入
/插入
int Insert(Stack& S, int x)
{
//判断是否为栈满
if (S.top == S.maxSize - 1)
{
return FALSE;
}
//将栈顶上移
S.top++;
//将元素插入在栈顶位置
S.link[S.top] = x;
return TRUE;
}
栈顶就像一个水阀,只有移动了才能进行插入,并且只能从栈顶外的方向插入
5.删除
//删除
int Delete(Stack& S)
{
//判断是否为空栈
if (S.top == -1)
{
return FALSE;
}
//删除
S.top--;
return TRUE;
}
栈的删除即逻辑上的删除,将栈顶下移就能对其删除使访问不到,系统会自动释放
6.清空和销毁
//清空栈中元素
int Clear(Stack& S)
{
S.top = -1;
}
//销毁栈(可以在析构中完成)
int Destory(Stack& S)
{
S.maxSize = 0;
delete S.link;
S.link = NULL;
S.top = -1;
}
二.队列
1.队列的特点是先进先出,有两个端口,分别为入口和出口,队尾入口,队头出口,每有一个元素插入队尾就需要后移,每有一个元素删除队头就后移
2.单程队列会造成假溢出问题,即在排队中,前面的人走了,我还没有走,但位置是不会前移的,所以后面的人不能排队进来,但是这个队列却是还有位置的,这就是假溢出
3.解决假溢出就是实现循环队列,让后面排队的人可以插入,而我间接变为队列的最前面,循环队列利用%实现
4.队列的第0个位置不存放元素,而是存放队头和队尾(即队列总需要有一个空间来存放队头和队尾),所以队列的最大长度为maxSize,但实际存放元素的最大量为maxSize-1,而%运算是对maxSize运算
1.声明
#include<iostream>
using namespace std;
#define FALSE 0
#define TRUE 1
class Queue
{
public:
int front;//队头
int rear;//队尾
int maxSize;//最大的长度
int* link;//指向队列的指针
};
2.初始化
//初始化
void Create(Queue& Q,int max_Size)
{
Q.maxSize = max_Size;
Q.link = new int(Q.maxSize);
Q.front = Q.rear = 0;//队头和队尾重叠且都为0即为初始空队
}
3.获取队头元素
//获取队头元素
int Front(Queue& Q)
{
//判断队列是否为空
if (Q.front == Q.rear)
{
return FALSE;
}
int x;
x = Q.link[(Q.front + 1) % Q.maxSize];//front+1即为位置为1的元素,0不存放元素
return x;
}
4.插入
//插入
int Insert(Queue& Q, int date)
{
//判断队列是否已满
if ((Q.rear + 1) % Q.maxSize == Q.front)//即队尾循环一圈才和队头重叠才是队满
{
return FALSE;
}
//在队尾进行元素的插入
Q.rear = (Q.rear + 1) % Q.maxSize;
Q.link[Q.rear ] = date;
return TRUE;
}
5.删除
//删除
int Delete(Queue& Q)
{
//判断队列是否为空
if (Q.front == Q.rear)
{
return FALSE;
}
//在队头进行元素的删除
Q.front = (Q.front + 1) % Q.maxSize;
return TRUE;
}
6.清空和销毁
//清空
void Clear(Queue& Q)
{
Q.front = Q.rear = 0;
}
//销毁
void Destroy(Queue& Q)
{
Q.maxSize = 0;
delete Q.link;
Q.link = NULL;
Q.front = Q.rear = 0;
}