7-1 根据后序和中序遍历输出先序遍历 (8分)
这是考试的一道编程题,由于分治法的分隔位置一直是弱项,遇到就害怕,再加上递归,考试没做出来,课后自己再敲了一下应该是OK的
输入格式:
第一行给出正整数N(≤30),是树中结点的个数。随后两行,每行给出N个整数,分别对应后序遍历和中序遍历结果,数字间以空格分隔。题目保证输入正确对应一棵二叉树。输出格式: 该树的先序遍历结果。数字间有1个空格
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
Preorder: 4 1 3 2 6 5 7
思路:
1.先序遍历、中序遍历、后序遍历的本质区别在于根节点出现的位置
根左右 左根右 左右根
2.重点是找到根在何处,所以有了后序遍历,我们可以找到根,并划分中序遍历
自我难点:每一次分治法的时候传参都不知道传什么值进去比较好
——原因:对于length的变化,递归后的位置变化难以把握
从图中可以看到根节点会把左右子树集合区分开来,我们可以知道,进行这样的一次区分,我们所需要的函数有:中序遍历输出的起始位置和结束位置,后序遍历的起始位置和终止遍历
那么写出各个区间的起始和中止位置就成为了一个难题(对于我来说),因为在递归的划分中他发生了变化
思路:由后序遍历的最后一个位置得到根节点,并将其输出
在中序遍历中遍历寻找根节点,以划分左右子树的集合
获取左右子树的长度:因为考虑滑块式的length,所以Leftlength=B-1-ms,Rightlength=me-(B+1)便于传入下一个递归的起始位置
右子树的后序遍历终止位置应为le-1(除去了已经输出的根节点)
#include<iostream>
using namespace std;
int N;
int lat[100];
int mid[100];
typedef struct TreeNode {
int data;
struct TreeNode*left;
struct TreeNode*right;
}TreeNode;
TreeNode *Tree = NULL;
void find(int ms, int me, int ls, int le)
{
int root = lat[le];
if ((ms >= me) || (ls >= le))
{
if (ms == me)
cout << root << ' ';
return;
}
else
{
cout << root<<' ';
int B = -1;
for (B = ms; B <= me; B++)
{
if (root == mid[B])
break;
}
if (B != -1)
{
int L = B - ms-1;
int R = me - B-1;
find(ms,B-1, ls, ls +L);
find(B + 1,me,le-R-1,le-1);
}
}
}
int main()
{
cin >> N;
for (int i = 0; i < N; i++)
{
cin >> lat[i];
}
for (int i = 0; i < N; i++)
{
cin >> mid[i];
}
find(0, N - 1, 0, N - 1);
}
同样类比,我们也可以敲出前序和中序推出后序
#include<iostream>
using namespace std;
int *Pre;
int *Mid;
void PrintLat(int ps,int pe,int ms,int me)
{
int root = Pre[ps];
if (ps >= pe || ms >= me)
{
if (ps == pe)
{
cout << root<<' ';
}
return;
}
int B = -1;
for (B = ms; B < me; B++)
{
if (root == Mid[B])
break;
}
int L = B - 1 - ms;
int R = me - 1 - B;
if (B != -1)
{
PrintLat(ps + 1, ps + 1 + L, ms, B - 1);
PrintLat(pe - R, pe, B + 1, me);
cout << root << ' ';
}
}
int main()
{
int N;
cin >> N;
Pre = new int[N];
Mid = new int[N];
int *Number = new int[N];
for (int i = 0; i < N; i++)
cin >> Pre[i];
for (int i = 0; i < N; i++)
cin >> Mid[i];
PrintLat(0, N - 1, 0, N - 1);
}
其实真正把图画好了问题不大,还是要多加练习,主要是自己对于二分查找的时候出现的一些不恰当的传参问题导致程序进入了死循环,有点畏惧