Happy 2006
 
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 8779 | Accepted: 2913 | 
Description
 Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006. 
 
 
 
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
 
 
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
 The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000). 
 
Output
 Output the K-th element in a single line.
 
Sample Input
2006 1 2006 2 2006 3
Sample Output
1 3 5
题意:给出m、k,求k个与m互质的数。
思路:我们知道gcd(b×t+a,b)=gcd(a,b) (t为任意整数),如果a与b互素,则b×t+a与b也一定互素,如果a与b不互素,则b×t+a与b也一定不互素。故与m互素的数对m取模具有周期性,则根据这个方法我们就可以很快的求出第k个与m互素的数。
AC代码:
#include <iostream> #include <cmath> #include <cstdlib> #include <cstring> #include <cstdio> #include <queue> #include <ctime> #define ll __int64 using namespace std; const int maxn = 1000000; int prime[maxn + 5]; bool vis[maxn + 5], flag[maxn + 5]; int cnt; void getprime() { memset(vis, false, sizeof(vis)); cnt = 0; for(int i = 2; i <= maxn; i++) if(!vis[i]) { prime[cnt++] = i; for(int j = 1; j * i<= maxn; j++) vis[j * i] = true; } } int euler(int n) { memset(flag, false, sizeof(flag)); int ret = n, m = n; for(int i = 0; prime[i] * prime[i] <= n; i++) if(n % prime[i] == 0) { ret = ret / prime[i] * (prime[i] - 1); while(n % prime[i] == 0) n /= prime[i]; for(int j = prime[i]; j <= m; j += prime[i]) flag[j] = true; } if(n > 1) { ret = ret / n * (n - 1); for(int j = n; j <= m; j += n) flag[j] = true; } return ret; } int find(int n, int id) { int cnt = 0; for(int i = 1; i <= n; i++) { if(!flag[i]) cnt++; if(cnt == id) return i; } return -1; } int main() { int m, k; getprime(); while(cin>>m>>k) { if(m == 1) { cout<<k<<endl; continue; } int len = euler(m); cout<<((k - 1)/ len) * m + find(m, (k - 1) % len + 1)<<endl; } return 0; }
                  
                  
                  
                  
                            
                            
本博客介绍了一个算法,用于找出与给定整数互质的第k个数。通过利用数学原理,该算法能够高效地解决这一问题。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2538
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            