一、查看 cuda 版本及显卡驱动支持的 cuda 版本
1. win+R进入CMD,用 nvcc -V 查看安装在 Windows 的 cuda 版本
2. win+R进入CMD,用 nvidia-smi 查看当前 nvidia 显卡的驱动版本及最高支持的 cuda 版本
3. 英伟达官方文档:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
-
CUDA Toolkit版本和驱动版本的兼容性信息
- CUDA Toolkit版本和驱动版本对照表
4. nvidia 显卡驱动 536.40 可以使用共享内存,驱动 546.01 中可以设置是否使用共享内存
二、使用 anaconda 安装 CUDA cudnn(pytorch 一般不需要安装,tensorflow 需要)
conda install cudatoolkit=11.2 -c nvidia -c conda-forge
conda install cudnn=8.1.0 -c nvidia -c conda-forge
三、安装 pytorch
1. 查看 pytorch 的 github 官方文档,查找 python 版本对应关系:https://github.com/pytorch/vision#installationpytorch
2. 通过 anaconda 创建对应 python 版本的虚拟环境
#- 创建名为 “环境名” 的虚拟环境,并指定 Python 的版本
conda create -n 环境名 python=3.9
3. 在 pytorch 官网,查找指令安装 pytorch:Previous PyTorch Versions | PyTorch
4. 安装完成后,判断 CUDA 是否可用
import torch
#- 查看 torch 的版本
print(f"PyTorch 版本: {torch.__version__}")
#- 查看 torch 对应的 cuda 版本
cuda_version = torch.version.cuda
if cuda_version is None:
print("当前安装的 PyTorch 是 CPU 版本,不支持 CUDA。")
else:
print(f"PyTorch 编译使用的 CUDA 版本: {cuda_version}")
#- 检查是否有可用的 CUDA 设备
if torch.cuda.is_available():
# 获取可用的 GPU 数量
num_gpus = torch.cuda.device_count()
print(f"检测到 {num_gpus} 个可用的 GPU:")
# 遍历每个 GPU 并打印其名称
for i in range(num_gpus):
gpu_name = torch.cuda.get_device_name(i)
print(f"GPU {i}: {gpu_name}")
else:
print("未检测到可用的 CUDA 设备。")
5. 虚拟环境中安装 ipykernel,用来使用 Jupyter nootebook
pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple
四、安装 tensorflow
1. TensorFlow 2.10 是支持原生 Windows 系统 GPU 环境的最后版本
来源:最新版TensorFlow的GPU版本不支持原生Windows系统(大坑预警)_tensorflow不支持windows-CSDN博客
2. 查找 Tensorflow 与 Python CUDA cuDNN 的版本对应表
来源:Tensorflow与Python、CUDA、cuDNN的版本对应表_tensorflow版本对应-CSDN博客
3. 可以通过 pip 的默认源来安装(可能需要翻墙)
pip install tensorflow==2.5.0
- tensorflow2的安装可能不用加“-gpu”标识
来源:tensorflow2版本与gpu和cpu的关系问题_tensorflow2.0以上是同时支持cpu和gpu吗-CSDN博客
4. 再通过上面【二、】中的方法安装 cudatoolkit 和 cudnn,也可以直接在电脑中安装完整的 cudatoolkit 和 cudnn
5. 如果要在电脑中安装 cudatoolkit 和 cudnn
详见:tensorflow详细安装教程(Win10, Anaconda,Python3.9)_tensorflow安装教程-CSDN博客
6. 安装完成后,判断 GPU 是否可用
import tensorflow as tf
#- 查看 TensorFlow 版本
print(f"TensorFlow 版本: {tf.__version__}")
#- 检查是否有可用的 GPU 设备
gpus = tf.config.list_physical_devices('GPU')
if gpus:
print("GPU 可用。")
print(f"可用的 GPU 数量: {len(gpus)}")
else:
print("GPU 不可用。")
7. 虚拟环境中安装 ipykernel,用来使用 Jupyter nootebook
pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple
五、conda pip 换源
1. conda 换源
- 在 Anaconda Prompt 或者 win+R 进入 CMD
- 输入conda config --set show_channel_urls yes,在 “C:\Users\你的用户名” 下会有 .condarc 文件生成,打开后输入以下代码
channels:
- defaults
show_channel_urls: true
ssl_verify: false
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
2. pip 换源
- 临时换源
pip install 包名 -i 源地址
- 永久换源
- 1. 在文件地址栏中输入 %APPDATA% 并回车
- 2. 进入 "C:\Users\你的电脑用户名\AppData\Roaming" 文件夹
- 3. 在该文件夹中新建一个名为 pip 的文件夹(如果已存在则无需创建)
- 4. 进入 pip 文件夹,在其中创建一个名为 pip.ini 的配置文件
- 5. 将以下内容写入 pip.ini 文件中
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
use-mirrors = true
mirrors = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn