问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
#include<iostream>
using namespace std;
int way[4][2]={{-1,0},{0,1},{1,0},{0,-1}};
int des(char ch)
{
switch(ch)
{
case 'U':
return 0;
case 'R':
return 1;
case 'D':
return 2;
case 'L':
return 3;
}
}
int main()
{
int n,m;
cin>>n>>m;
int i,j,map[100][100];
for(i=0;i<n;i++)
for(j=0;j<m;j++)
cin>>map[i][j];
int x,y,k,z;
char ch;
cin>>x>>y>>ch>>k;
z=des(ch);
for(i=0;i!=k;i++)
{
if(map[x][y])
{
map[x][y]=0;
z=z+1;
if(z==4)z=0;
x+=way[z][0];
y+=way[z][1];
}
else
{
map[x][y]=1;
z=z-1;
if(z==-1)z=3;
x+=way[z][0];
y+=way[z][1];
}
}
cout<<x<<" "<<y;
return 0;
}