算法的基本概念

算法的基本概念

什么是算法(算法的定义)

程序=数据结构+算法

数据结构是要处理的信息

算法是处理信息的步骤

算法的五个特征

有穷性

有穷时间内能执行完,算法是用穷的,程序可以是无穷的。

确定性

相同的输入只会产生相同的输出

可行性

可以用已有的基本操作实现算法

输入

丢给算法处理的数据,输入可以是0个或者多个

输出

算法处理的结果,至少为1个

“好算法的特质”(算法设计的要求)

正确性

能正确解决问题,可分为以下三个层次:

  • 算法对于几组输入数据能够得出满足要求的结果

  • 算法对于精心选择的典型、苛刻而带有刁难性的输入数据能够得出满足要求的结果

  • 算法对于一切的合法输入数据都能产生满足要求的结果

可读性

对算法的描述要让其他人看得懂

健壮性(鲁棒性)

非法输入的抵抗能力,它强调即使输入了非法数据,算法也能加以识别!

高效率与低存储需求

  • 算法执行省时、省内存

  • 时间复杂度低、空间复杂度低


算法效率的度量(考研必考)

时间复杂度(时间开销与问题规模n之间的关系)

如何评估算法时间开销

让算法先运行,事后统计运行时间所存在的问题:

  • 和机器的性能有关,如超级计算机vs单片机
  • 和编程语言有关,越高的语言执行的效率越低
  • 和编译程序产生的机器指令质量有关
  • 有些算法是不能事后在统计的,如导弹的预测

算法时间复杂度

事先估计算法时间开销T(n)与问题规模n的关系(T表示“time”)

void loveyou(int n){ //n为问题规模
    int i=1;
    while(i<=n){
        i++;
        printf("I love you %d",n);
    }
    printf("I love you more than %d",n);
}
int main(){
    loveyou(3000);
}

语句频度:

2行 ————1次

3行 ————3001次(while判断语句)

4,5两行 ————3000次

7行 ————1次
T ( 3000 ) = 1 ∗ 3001 + 2 ∗ 3000 + 1 T(3000)=1*3001+2*3000+1 T(3000)=13001+23000+1
时间开销与问题规模n的关系:
T ( n ) = 3 n + 3 T(n)=3n+3 T(n)=3n+3

忽略表达式的某些部分

T 1 ( n ) = 3 n + 3 ≈ 3 n T 2 ( n ) = n 2 + 3 n + 1000 ≈ n 2 T 3 ( n ) = n 3 + n 2 + 9999 ≈ n 3 T_1(n)=3n+3\approx3n\\ T_2(n)=n^2+3n+1000\approx n^2\\ T_3(n)=n^3+n^2+9999\approx n^3 T1(n)=3n+33nT2(n)=n2+3n+1000n2T3(n)=n3+n2+9999n3

当n足够大时,可以只考虑阶数高的部分,甚至可以将前面的系数去掉,简化如下:
T 1 ( n ) = O ( n ) T 2 ( n ) = O ( n 2 ) T 3 ( n ) = O ( n 3 ) T_1(n)=O(n)\\ T_2(n)=O(n^2)\\ T_3(n)=O(n^3) T1(n)=O(n)T2(n)=O(n2)T3(n)=O(n3)
大O表示法:大O表示“同阶”,同等数量级。即当n→∞时,二者之比为常熟
T ( n ) = O ( f ( n ) ) ⟺ l i m n → + ∞ T ( n ) f ( n ) = k T(n)=O(f(n))\Longleftrightarrow \\lim_{n\rightarrow+\infty}\frac{T(n)}{f(n)}=k T(n)=O(f(n))limn+f(n)T(n)=k

  • 加法规则:多项相加,只保留最高阶的项,且系数变为1

T ( n ) = T 1 ( n ) + T 2 ( n ) = O ( f ( n ) ) + O ( g ( n ) ) = O ( m a x ( f ( n ) , g ( n ) ) ) T(n)=T_1(n)+T_2(n)=O(f(n))+O(g(n))=O(max(f(n),g(n))) T(n)=T1(n)+T2(n)=O(f(n))+O(g(n))=O(max(f(n),g(n)))

  • 乘法规则:多项相乘,都保留

T ( n ) = T 1 ( n ) ∗ T 2 ( n ) = O ( f ( n ) ) ∗ O ( g ( n ) ) = O ( f ( n ) ∗ g ( n ) ) T(n)=T_1(n)*T_2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)) T(n)=T1(n)T2(n)=O(f(n))O(g(n))=O(f(n)g(n))

T 3 ( n ) = n 3 + n 2 log ⁡ 2 n = O ( n 3 ) + O ( n 2 l o g 2 n ) T_3(n)=n^3+n^2\log_2n=O(n^3)+O(n^2log_2n) T3(n)=n3+n2log2n=O(n3)+O(n2log2n)

根据加法规则,只保留数量级大的,下面给出数量级比较:
O ( 1 ) < O ( log ⁡ 2 n ) < O ( n ) < O ( n log ⁡ 2 n ) < O ( n 2 ) < O ( n 3 ) < O ( 2 n ) < O ( n ! ) < O ( n n ) O(1)<O(\log_2n)<O(n)<O(n\log_2n)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n) O(1)<O(log2n)<O(n)<O(nlog2n)<O(n2)<O(n3)<O(2n)<O(n!)<O(nn)

结论1:顺序执行的代码只会影响常数项,可以忽略。

结论2:只需挑循环中的一个基本操作分析它的执行次数与n的关系即可

结论3:如果有多层循环,只需要关注最深层循环了几次

三种时间复杂度

void loveYou(int flag[], int n){
    printf("I am Iron man");
    for(int i=0;i<n;i++){
        if(flag[i]==n){
            printf("I love you %d",n);
            break;//找到后立即跳出循环
        }
    }
}

计算上述代码的时间复杂度T(n)

最好情况:元素n在第一个位置 最好时间复杂度

最坏情况:元素n在最后一个位置 最坏时间复杂度

平均情况:假设元素n在任意一个位置的概率相同为1/n 平均时间复杂度

通常只关注最坏时间复杂度和平均时间复杂度


空间复杂度(空间开销(内存开销)与问题规模n之间的关系)

程序执行之前会先将程序代码装入内存中,同时将数据也装入内存中。

void test(int n){
    int flag[n][n];
    int other[n];
    int i;
}

上述代码的时间复杂度为:
S ( n ) = 4 ∗ n 2 + 4 ∗ n + 4 = O ( n 2 ) + O ( n ) + O ( 1 ) = O ( n 2 ) S(n)=4*n^2+4*n+4=O(n^2)+O(n)+O(1)=O(n^2) S(n)=4n2+4n+4=O(n2)+O(n)+O(1)=O(n2)
同时间复杂度的计算。

函数递归调用带来的内存开销

空间复杂度=递归调用的深度

void loveyou(int n){
    int a,b,c;
    if(n>1){
        loveyou(n-1);
    }
    printf("I love you%d\n",n)
}
int main(){
    loveyou(5);
}

每次递归调用时,内存中都会有a,b,c,n等变量,函数递归n次,则空间复杂度为S(n)=O(n)

void loveyou(int n){
    int flag[n];
    if(n>1){
        loveyou(n-1);
    }
    printf("I love you%d\n",n)
}
int main(){
    loveyou(5);
}

不同于上段代码,此代码在递归时每次都会给flag分配n个空间大小,共递归n次,则:
S ( n ) = n 2 + n 2 = O ( n 2 ) S(n)=\frac{n^2+n}{2}=O(n^2) S(n)=2n2+n=O(n2)

  • 12
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值