遗传算法基本概念

遗传算法是一种自组织、自适应和自学习型的算法,具备本质并行性和不需求导的特点。核心概念包括基因型、表现型、编码与解码、选择、复制、交叉和变异。适应值在最大化和最小化问题中有不同处理方式,适应度函数设计需避免欺骗问题。常见编码方式有二进制、整数、实数、格雷码、符号和DNA编码等。
摘要由CSDN通过智能技术生成

基本概念与术语:

基因型(genotype):遗传因子组合的模型,指的是一个生物体内所包含的基因,也就是说该生物的细胞内所包含的、它所特有的那组基因。

表现型(phenotype):由染色体决定性状的外部表现

编码(coding):表现型到基因型的映射

解码(decoding):从基因型到表现型的映射

基因座(locus):遗传基因在染色体中所占据的位置,同一基因座可能有的全部基因称为等位基因,如下图所示,绿色所框住的就是等位基因

选择(selection):指决定以一定的概率从种群中选择若干个体的操作

复制(reproduction):细胞在分裂时,遗传物质DNA通过复制而转移到新产生的细胞中&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zachery.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值