SfM——八点法计算F矩阵(基础矩阵)与三角测量

1 八点法计算F矩阵(基础矩阵)

基础矩阵用于描述两个视图之间的几何关系

  1. 基础矩阵:基础矩阵 F F F 是描述两个视图之间相机投影关系的矩阵。对于两个对应的图像坐标点 ( x , y , 1 ) (x, y, 1) (x,y,1) ( u , v , 1 ) (u, v, 1) (u,v,1)​ 在两个视图上,基础矩阵满足以下方程:

    这个方程即对极约束,描述了图像中对应点的投影关系

[ u v 1 ] T ⋅ F ⋅ [ x y 1 ] = 0 \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}^T \cdot F \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 uv1 TF xy1 =0

  1. 线性系统:对于多对对应点,可以构建一个线性方程系统 A f = 0 Af = 0 Af=0 ,其中 A A A 是由对应点生成的矩阵, f f f​ 是基础矩阵的扁平形式

    上述方程即:

[ u v 1 ] ⋅ [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] ⋅ [ x y 1 ] = 0 \begin{bmatrix} u & v & 1 \end{bmatrix} \cdot \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 [uv1] f11f21f31f12f22f32f13f23f33 xy1 =0

​ 展开得到:

[ u x v x x u y v y y u v 1 ] ⋅ [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] = 0 \begin{bmatrix} ux&vx&x&uy&vy&y&u&v&1 \end{bmatrix}\cdot \begin{bmatrix}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \\ \end{bmatrix} = 0 [uxvxxuyvyyuv1] f11f12f13f21f22f23f31f32f33 =0

​ 这个矩阵方程可以表示为 A i f = 0 A_if = 0 Aif=0

​ 为了解出这个9个未知数的 f f f ,我们至少需要8对点,所以叠加 A i A_i Ai 得到 A A A 矩阵

A = [ x 1 u 1 x 1 v 1 x 1 y 1 u 1 y 1 v 1 y 1 u 1 v 1 1 x 2 u 2 x 2 v 2 x 2 y 2 u 2 y 2 v 2 y 2 u 2 v 2 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ x 8 u 8 x 8 v 8 x 8 y 8 u 8 y 8 v 8 y 8 u 8 v 8 1 ] A = \begin{bmatrix} x_1u_1 & x_1v_1 & x_1 & y_1u_1 & y_1v_1 & y_1 & u_1 & v_1 & 1 \\ x_2u_2 & x_2v_2 & x_2 & y_2u_2 & y_2v_2 & y_2 & u_2 & v_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_8u_8 & x_8v_8 & x_8 & y_8u_8 & y_8v_8 & y_8 & u_8 & v_8 & 1 \end{bmatrix} A= x1u1x2u2x8u8x1v1x2v2x8v8x1x2x8y1u1y2u2y8u8y1v1y2v2y8v8y1y2y8u1u2u8v1v2v8111

  1. 最小二乘法:通过奇异值分解(SVD),取 V T V^T VT 的最后一列作为估计矩阵 A A A 的最小二乘解,即 f f f

    方程的最小二乘解有一个既定的结论,即对 A A A 进行SVD分解,得到的 V T V^T VT 的最后一行 即是 f f f 的解

  2. 基础矩阵还原:将 f f f reshape 为 3 × 3 3 \times 3 3×3​ 的矩阵,然后通过奇异值分解(SVD)对矩阵进行调整,以确保基础矩阵的秩为2

    • SVD分解:
      对矩阵 F F F 进行奇异值分解: F = U Σ V T F = U \Sigma V^T F=UΣVT ,其中 U U U V V V 是正交矩阵, Σ \Sigma Σ 是对角矩阵

    • 秩-2约束:
      将奇异值矩阵 Σ \Sigma Σ 调整为仅保留前两个奇异值(将第三个奇异值设为0),以确保基础矩阵的秩为2

    • 重构基础矩阵:
      F = U Σ ′ V T F = U \Sigma' V^T F=UΣVT

    F = f.reshape((3, 3))
    
    # 对F进行SVD分解
    U, S, Vt = np.linalg.svd(F)
    
    # 将奇异值矩阵Sigma调整为仅保留前两个奇异值(第三个设为0)
    S[2] = 0
    
    # 重构基础矩阵F
    F = np.dot(U, np.dot(np.diag(S), Vt))
    
  3. 归一化:对基础矩阵进行归一化,以确保尺度的一致性

2 标准化八点算法

对普通的八点算法进行了改进,通过标准化输入数据,提高了算法的稳健性和准确性

  1. 我们首先将对应点标准化为零均值和单位方差,以消除尺度的影响

    mean1 = np.mean(keypoints1, axis=0)
    mean2 = np.mean(keypoints2, axis=0)
    std1 = np.std(keypoints1, axis=0)
    std2 = np.std(keypoints2, axis=0)
    # 防止除0,由于齐次坐标,标准差std算得最后一项为0
    std1[2] = 1
    std2[2] = 1
    nomalized_points1 = (keypoints1 - mean1) / std1
    nomalized_points2 = (keypoints2 - mean2) / std2
    

x ˉ = x − μ x ˉ σ x \bar{x} = \frac{x - \bar{\mu_x}}{\sigma_x} xˉ=σxxμxˉ

也等于左乘一个转换矩阵 T T T

T = [ 1 σ x 0 − μ x σ x 0 1 σ y − μ y σ y 0 0 1 ] T = \begin{bmatrix} \frac{1}{\sigma_x} & 0 & -\frac{\mu_x}{\sigma_x} \\ 0 & \frac{1}{\sigma_y} & -\frac{\mu_y}{\sigma_y} \\ 0 & 0 & 1 \end{bmatrix} T= σx1000σy10σxμxσyμy1

  1. 在这些标准化点上运行八点算法

  2. 最后对得到的基本矩阵进行反变换,在计算基础矩阵后,需要将其进行撤销标准化处理,以获得最终的基础矩阵

F = T 2 − 1 ⋅ F n o r m a l i z e d ⋅ T 1 F = T_2^{-1} \cdot F_{normalized} \cdot T_1 F=T21FnormalizedT1

3 三角测量

我们有两个相机,它们的c分别为 P 1 P_1 P1 P 2 P_2 P2 3 × 4 3 \times 4 3×4​ 矩阵)。

P = K [ R ∣ t ] P = K\begin{bmatrix}R|t\end{bmatrix} P=K[Rt]

对于一个在相机1和相机2中分别观察到的同一物体的对应点 x ~ 1 \tilde x_1 x~1 x ~ 2 \tilde x_2 x~2 (齐次坐标 3 × 1 3 \times 1 3×1 向量) ,我们可以得到以下方程:其中, X ~ \tilde X X~ (齐次坐标 4 × 1 4 \times 1 4×1 向量)是物体在三维空间中的坐标

P 1 X ~ = x ~ 1 P 2 X ~ = x ~ 2 P_1 \tilde X =\tilde x_1\\ P_2 \tilde X =\tilde x_2 P1X~=x~1P2X~=x~2

P P P 分解为三个向量:

P i = [ P i 1 P i 2 P i 3 ] P i 1 = [ p 11 , p 12 , p 13 , p 14 ] P i 2 = [ p 21 , p 22 , p 23 , p 24 ] P i 3 = [ p 31 , p 32 , p 33 , p 34 ] P_i =\begin{bmatrix}P_{i1}\\ P_{i2} \\ P_{i3} \end{bmatrix} \\ P_{i1} = [p_{11}, p_{12}, p_{13}, p_{14}] \\ P_{i2} = [p_{21}, p_{22}, p_{23}, p_{24}] \\ P_{i3} = [p_{31}, p_{32}, p_{33}, p_{34}] \\ Pi= Pi1Pi2Pi3 Pi1=[p11,p12,p13,p14]Pi2=[p21,p22,p23,p24]Pi3=[p31,p32,p33,p34]

这样,原等式就变为:

[ P i 1 X ~ P i 2 X ~ P i 3 X ~ ] = [ x i y i 1 ] \begin{bmatrix}P_{i1}\tilde X \\ P_{i2}\tilde X \\ P_{i3}\tilde X\end{bmatrix} =\begin{bmatrix}x_i \\ y_i \\ 1\end{bmatrix} Pi1X~Pi2X~Pi3X~ = xiyi1

将左边向量齐次化除以第三个元素,与右边向量元素一一对应:

P i X ~ = [ P i 1 X ~ P i 3 X ~ P i 2 X ~ P i 3 X ~ 1 ] = [ x i y i 1 ] = x ~ i x i = P i 1 X ~ P i 3 X ~ ⇒ x i P i 3 X ~ − P i 1 X ~ = 0 y i = P i 2 X ~ P i 3 X ~ ⇒ y i P i 3 X ~ − P i 2 X ~ = 0 P_i \tilde X = \begin{bmatrix} \frac{P_{i1} \tilde X}{P_{i3}\tilde X} \\ \frac{P_{i2} \tilde X}{P_{i3} \tilde X} \\ 1 \end{bmatrix}= \begin{bmatrix}x_i \\ y_i \\ 1 \end{bmatrix} = \tilde x_i \\ x_i = \frac{P_{i1} \tilde X}{P_{i3} \tilde X} \Rightarrow x_iP_{i3} \tilde X-P_{i1} \tilde X = 0 \\ y_i = \frac{P_{i2} \tilde X}{P_{i3} \tilde X} \Rightarrow y_iP_{i3} \tilde X-P_{i2} \tilde X = 0 PiX~= Pi3X~Pi1X~Pi3X~Pi2X~1 = xiyi1 =x~ixi=Pi3X~Pi1X~xiPi3X~Pi1X~=0yi=Pi3X~Pi2X~yiPi3X~Pi2X~=0

由于我们知道 x 1 x_1 x1 x 2 x_2 x2 P 1 P_1 P1 P 2 P_2 P2​​ ,我们可以将其转化为一个齐次线性方程组

A 1 = [ x 1 P 13 − P 11 y 1 P 13 − P 12 ] A 2 = [ x 2 P 23 − P 21 y 2 P 23 − P 22 ] A = [ A 1 A 2 ] A X ~ = 0 A_1 = \begin{bmatrix} x_1 P_{13} - P_{11} \\ y_1 P_{13} - P_{12} \end{bmatrix} \\ A_2 = \begin{bmatrix} x_2 P_{23} - P_{21} \\ y_2 P_{23} - P_{22} \end{bmatrix} \\ A = \begin{bmatrix}A_1 \\ A_2 \end{bmatrix} \\ A\tilde X = 0 A1=[x1P13P11y1P13P12]A2=[x2P23P21y2P23P22]A=[A1A2]AX~=0

A = np.array(
    [keypoint1[0] * P1[2] - P1[0],
     keypoint1[1] * P1[2] - P1[1],
     keypoint2[0] * P2[2] - P2[0],
     keypoint2[1] * P2[2] - P2[1]]
)

这样我们就可以使用最小二乘法或其他方法来解决这个线性方程组,从而找到物体的三维位置 X X X

# DLT算法解决最小二乘法
_, _, Vt = np.linalg.svd(A)
x_w = Vt[-1]
x_w = x_w / x_w[3] # 齐次坐标
  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实现经典的结构光三维重建(SFM)的因子分解可以按照以下步骤进行: 1. 首先,根据输入的图像帧序列,需要进行相机的标定。相机标定可以通过使用已知的三维点以及其在各个图像帧中的对应二维点来完成。标定的结果可以得到相机的内参矩阵K,用于后续的计算。 2. 然后,对于每一对相邻的图像帧i和j,需要进行特征点的匹配。可以使用特征点提取和匹配的算,例如SIFT、SURF或ORB等。匹配结果可以得到图像帧i和j之间的特征点对应关系。 3. 接下来,利用对应关系计算基本矩阵F。根据计算的特征点对应关系,可以使用RANSAC等算来估计F矩阵,从而描述相邻帧之间的基础几何关系。 4. 在得到F矩阵后,根据相机标定的结果,可以计算出本质矩阵E。E矩阵表示相邻帧间相机运动的本质关系。 5. 利用SVD分解,将本质矩阵E分解为旋转矩阵R和缩放矩阵S。 6. 计算出的R和S矩阵描述了相机在不同图像帧之间的运动关系。可以将其保存为txt文件。 7. 最后,利用保存的R和S矩阵,可以进行三维点云的重建。根据相机的投影模型,将图像帧中的特征点反投影到三维空间中,得到点云数据。将点云数据保存到txt文件中。 需要注意的是,实际的实现过程中还需要处理异常情况,如特征点匹配失败、计算求解过程中的数值稳定性、优相机位姿等;同时,SFM中的点云重建也可以进一步优,例如加入非线性优、进行点云滤波等。以上是经典的SFM因子分解的基本步骤,实际实现中还需要根据具体情况进行细和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值