深度学习之图像的数据增强

在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强, 数据增强,常用的方式,就是旋转图像,剪切图像,改变图像色差,扭曲图像特征,改变图像尺寸大小,增强图像噪音(一般使用高斯噪音,盐椒噪音)等. 但是需要注意,不要加入其他图像轮...

2019-03-04 08:50:59

阅读数 27

评论数 0

tensorflow 训练完模型的导出和测试模型

在我的另一篇博客中[tensorflow 物体检测(检测限速标志)](https://blog.csdn.net/WK785456510/article/details/86149398)中已经训练好了模型,接下来我们进行测试模型。 导出模型文件 训练完以后,如何对单张图片进行目标检测呢? ...

2019-01-11 16:12:44

阅读数 699

评论数 0

Xshell远程服务器后Tensorboard的本地可视化方法

问题 由于tensorflow程序在远程服务器运行,而tensorboard启动后访问地址为:0.0.0.0:6006,导致无法在本机用浏览器访问。 Xshell解决方法 1.不太推荐的方法 可能大家在网上查了许多资料后,看到一种常见的是使用命令  ssh -L 16006:127.0.0.1:...

2019-01-11 08:34:15

阅读数 127

评论数 1

tensorflow 物体检测(检测限速标志)

  环境配置 使用protobuf来配置模型和训练参数,所以API正常使用必须先编译protobuf库,这里可以下载直接编译好的pb库(https://github.com/google/protobuf/releases ),解压压缩包后,把protoc加入到环境变量中: $ cd ten...

2019-01-09 16:19:40

阅读数 257

评论数 2

np.dot np.multiply 和*在np.array np.mat 的不同结果

import numpy as np  观察以下两个输出语句结果的不同: import numpy as np   a1 = np.array([[1, 2], [3, 4]]) c1 = np.array([[5,6],[7,8]])   b1 = np.mat([[1, 2], [3, 4...

2018-11-28 13:07:22

阅读数 62

评论数 0

yolov3 制作voc数据格式:xml转换成txt

  按照voc数据集的结构放置图像文件。 1)Annotation中主要存放xml文件,每一个xml对应一张图像,并且每个xml中存放的是标记的各个目标的位置和类别信息,命名通常与对应的原始图像一样; 2)ImageSets我们只需要用到Main文件夹,这里面存放的是一些文本文件,通常为tr...

2018-08-10 16:48:28

阅读数 2754

评论数 0

全卷积网络 Fully Convolutional Networks

  CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet...

2018-07-27 10:56:03

阅读数 47

评论数 0

Faster R-CNN原理介绍

Faster R-CNN原理介绍 2017-01-17 分类:图像 阅读(16915) 评论(0)  看本文之前需要先了解Fast RCNN。 Faster R-CNN提出了一种加快计算region proposals的方法,就是通过建立RPN(Region Proposal Network...

2018-07-26 22:25:42

阅读数 82

评论数 0

faster r-cnn实现过程

目录 faster rcnn论文备注 caffe代码框架简介 faster rcnn代码分析 后记 faster rcnn论文备注 引言faster rcnn paper是Ross Girshick在基于CNN生成region proposal提速识别方案, 主要...

2018-07-26 21:30:03

阅读数 194

评论数 0

Pycharm 2018 配置Anaconda

  官网链接 官网的说明: 具体步骤: File–> default settings –> project interpreter –> add 在弹出来的对话框中左侧选择conda environment。由于我已经自己安装...

2018-07-19 16:09:40

阅读数 905

评论数 1

ubuntu/Linux 下 Pycharm 安装中文汉化包

1. 打开终端,依次执行如下命令:   cd /tmp   git clone https://github.com/ewen0930/PyCharm-Chinese   cd Pycharm-Chinese   bash package.cmd (若找...

2018-07-19 14:02:53

阅读数 447

评论数 0

设置python3为默认python

我们知道在Windows下多版本共存的配置方法就是改可执行文件的名字,配置环境变量。 Linux中的配置原理差不多,思路就是生成软链接,配置到环境变量。 在没配置之前,我的Ubuntu中安装了python2.7和python3.6。而且输入python默认使用的是python2.7 我需...

2018-07-18 10:37:54

阅读数 3238

评论数 0

ssp(空间金字塔池化)

前言:    接着上一篇文章提到的RCNN网络物体检测,这个网络成功的引入了CNN卷积网络来进行特征提取,但是存在一个问题,就是对需要进行特征提取图片大小有严格的限制。当时面对这种问题,rg大神采用的是对分割出的2000多个候选区域,进行切割或者缩放形变处理到固定大小,这样虽然满足了CNN对图片...

2018-07-16 20:21:21

阅读数 1120

评论数 0

faster rcnn 详解

经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refin...

2018-07-16 16:42:46

阅读数 57

评论数 0

YOLO算法详解

YOLO全称You Only Look Once: Unified, Real-Time Object Detection,是在CVPR2016提出的一种目标检测算法,核心思想是将目标检测转化为回归问题求解,并基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。YO...

2018-07-16 16:40:17

阅读数 601

评论数 0

SSD算法详解

SSD目标检测 白裳丶 为啥你们只收藏不点赞? 161 人赞了该文章 SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比...

2018-07-16 16:38:05

阅读数 3881

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭