前言
深度学习的数据处理以及模型训练测试等过程都是Python工具实现的,在C++项目中的部署就显得不方便,目主要有几种途径,1)通过编译C++接口的库,比如C++版本的Tensorflow,C++实现推理过程;2)通过特定的工具实现,比如OpenCV实现模型部署,这种方法局限性高;3)通过C++和Python混编,通过C++调用Python推理过程,这里主要实现最后一种方式。
一、环境配置
- VS2015;
- Tensorflow v1.14,含Keras 库;
- Anaconda 配置的虚拟环境
二、使用步骤
1.创建C++工程
默认你对VS有一定的熟悉度,工程创建之后,配置环境;我这里使用的是Anaconda的虚拟环境;将虚拟环境复制到C++项目中;我这里有GPU环境和CPU环境;我以CPU为例:
复制到你的工程中:
模型也复制到该文件夹:model.h5(Keras训练的模型)&#x