深度学习模型部署,c++调用python模块的Tensorflow推理过程

本文介绍了如何在C++项目中部署深度学习模型,通过C++调用Python进行Tensorflow推理过程。首先配置环境,包括VS2015、Tensorflow v1.14和Anaconda虚拟环境。接着详细阐述了创建C++工程,配置环境变量和链接器设置,并提供了代码演示,强调了在C++中调用Python脚本时的注意事项。测试结果显示,C++调用Python进行推理的速度在CPU环境下为220-260ms,而在GPU环境下为25-30ms。
摘要由CSDN通过智能技术生成

 

 

文章目录

 


前言

深度学习的数据处理以及模型训练测试等过程都是Python工具实现的,在C++项目中的部署就显得不方便,目主要有几种途径,1)通过编译C++接口的库,比如C++版本的Tensorflow,C++实现推理过程;2)通过特定的工具实现,比如OpenCV实现模型部署,这种方法局限性高;3)通过C++和Python混编,通过C++调用Python推理过程,这里主要实现最后一种方式。


 

一、环境配置

  1. VS2015;
  2. Tensorflow v1.14,含Keras 库;
  3. Anaconda 配置的虚拟环境

二、使用步骤

1.创建C++工程

默认你对VS有一定的熟悉度,工程创建之后,配置环境;我这里使用的是Anaconda的虚拟环境;将虚拟环境复制到C++项目中;我这里有GPU环境和CPU环境;我以CPU为例:

复制到你的工程中:

模型也复制到该文件夹:model.h5(Keras训练的模型)&#x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值