几种最小生成树算法

Kruskal O(e * log e)

#define maxm        // 最大边数 
#define maxn        // 最大顶点数 
int u[maxm];        // 边的起点 
int v[maxm];        //  终点 
int w[maxm];        // 边权 
int p[maxn];        // 并查 
int r[maxm];        // 排序辅助数组 
int n, m;

int cmp(int i, int j) {
    return w[i] < w[j];
}
int findp(int x) {
    return p[x] == x ? x : p[x] = findp(p[x]);
}
int kruskal() {
    int ans = 0;
    int cnt = 0;
    for (int i = 0; i < m; i++) {
        r[i] = i;
    } 
    for (int i = 0; i < n; i++) {
        p[i] = i;
    }
    sort(r, r + m, cmp);
    for (int i = 0; i < m; i++) {
        int e = r[i], x = findp(u[e]), y = findp(v[e]);
        if (x != y) {
            p[x] = y;
            ans += w[e];
            cnt++;
        }
        if (cnt >= n - 1) {
            break;
        }
    }
    return ans;
}

Prim O(v * v)

#define maxn 
#define inf 
int lc[maxn];           // 点到已选点集合中的点的最短路径长度 
int d[maxn][maxn];      // 原图 
int v[maxn];            // 已选标记 
int n;                  // 总点数 
int prim() {
    int ans = 0;        
    memset(v, 0, sizeof v);     // 清零 
    lc[0] = 0;                  // 选0号为起始节点 
    v[0] = 1;
    for (int i = 1; i < n; i++) {
        lc[i] = d[0][i];
    }
    for (int i = 1; i < n; i++) {
        int m = inf, tmp;
        for (int j = 0; j < n; j++) {
            if (!v[j] && m > lc[j]) {
                m = lc[tmp = j];
            }
        }
        ans += m;
        lc[tmp] = 0;
        v[tmp] = 1;
        for (int j = 0; j < n; j++) {
            lc[j] = min(lc[j], d[tmp][j]);
        }
    }
    return ans;
}

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值