素数判定(埃筛,欧拉筛)

一,埃筛(6x孪生素数法)(判断单个素数较优)

1,首先,一个合数必定可由其平方根相乘得到,或者一个大于,一个小于平方根的数得到,利用这个思想,只需考虑是否可以除去平方根一边的数,可以则另一半绝对可以

2,其次,可以被除,那就是合数,不是素数

3,可以证明,在6*n相邻左右边的首先都是奇数,所以有可能是素数,而不是相邻绝对不是素数,因为6*n+(-)2==2*(3*n+(-)1),或者6*n+(-)3==2*(3*n+(-)1),4也是同理

代码如下

#define _CRT_SECURE_NO_WARNINGS 1
#include <bits/stdc++.h>
#define ll long long
using namespace std;

int ai(ll n) {
	if (n < 5) {   //小于5时直接判定
		if (n == 2 || n == 3)return 1;
		else return 0;
	}
	else {
		if (n % 6 != 1 && n % 6 != 5)return 0;//不在6旁边的n不是奇数,绝对不会是素数
		for (ll i = 5; i*i <= n; i += 6) { //6n的左右就是余数1或者5(0或者6的左右),所以以1或者5为起点不断+6,减少计算量(实际只要一个,如5+2就是得1(因为7-6=1)
			if (n % i == 0 || n % (i + 2) == 0)return 0;  //n能被这些可能为素数的奇数整除,那就不是素数
		}
		return 1;//能遍历到最后,就是素数

	}

}

int main() {
	ll c;
	cin >> c;
	while (c--) {
		ll n;
		cin >> n;
		if (ai(n))cout << "YES" << endl;
		else cout<<"NO"<<endl;
	}
	return 0;
}

二,欧拉筛(统计与输出前n个素数较优)

1,首先,每个合数都可以由一个素数和另一个数乘积获得

2,i = m * n,m是最小质因子(素数=质数),若n为合数,n= x*y,x是一个质数,且x>m,则i = mn = mxy = xmy,且my = k.,则i = x*k,且 x>m

所以,我们可以让每个合数只由其最大素数因子获得,保证不重复标记

#define _CRT_SECURE_NO_WARNINGS 1
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e6 + 100;

ll book[N];
ll in[N];

ll oula(ll n) {
	in[0] = 0;
	memset(book, 0, sizeof(book));//全部为0,表示没有访问过
	for(ll i=2;i<=n;++i){
		if (!book[i]) {  //没有标记,就是素数,进入
			book[i] = 1;
			in[++in[0]] = i;//in[0]是目前素数个数
		}
		for (ll j = 1; j <= in[0] && i * in[j] <= n; ++j) {//j表示第几个素数,所以j小于in[0],目前已经统计的素数的量,i * in[j] <= n这个条件保证不超出,否则死循环停不下来
			book[i * in[j]] = 1;//素数的倍数全部是合数,直接改为1(表示访问过,不让进入)
			if (i % in[j] == 0)break; //如果i是in[j]的倍数,跳出,不然会重复记录素数,因为如果不跳in[j+1]*i==in[j+1]*in[j]*t(t为i/in[j]),保证了每个合数都是由最大质数得到的
		}         //结果还是in[j]的倍数,虽然这次跳出,但是后面i会以in[j]的倍数出现,如果这里访问,后面就是重复标记了


	}
	cout << in[0] << endl;
}

int main() {
	ll c;
	cin >> c;
	while (c--) {
		ll n;
		cin >> n;
		oula(n);
	}
	return 0;
}

例题:I-最大公约数求和

思路:欧拉筛线性优化积性函数

  1. n取到2e7,不把他压成线性,是不可能通过的(少求gcd与快速幂)
  2. 我们这可是1~n的求啊,gcd的话欧拉筛不是可以使得快速幂在欧拉筛里面解决。即f(x)=x^{k},即f(xy)=f(x)*f(y)=x^{k}*y^{k}
  3. gcd也是可以的,我们如果求一个数x的gcd,设他的最小因子p,如果k/(g[x/p])≡0 ,那么g[x]=g[x/p]*p,否则等于g[x]。
  4. 而对于不是最小因子的质数q,有g[x]=g[x/q]*g[q]。等式成立原因,首先,如果gcd[q]不等于1,说明k有因子q,又因为q不是x的因子,所以他的gcd还可以再乘一个k有的因子而x没有的因子q
#include <bits/stdc++.h>
using namespace std;
#define ll               long long
#define endl             "\n"
#define int              long long
const int N = 2e7 + 10;
const int mod=1000000007;
int m[N],g[N],ou[N];
bool vis[N];
ll fastmi(ll base,ll power)
{
	ll ans=1;
	while (power)
		{
			if (power&1)ans=ans*base%mod;
			base=base*base%mod;
			power>>=1;
		}
	return ans;
}

void mysolve()
{
	int n,k;
	cin>>n>>k;
	ll ans=g[1]=m[1]=1;//i为1时
	for (int i=2; i<=n; ++i)
		{
			if (!vis[i])
				{
					ou[++ou[0]]=i;
					g[i]=__gcd(i,k);//求出所有质数的快速幂与gcd
					m[i]=fastmi(i,k);
				}
			for (int j=1; i*ou[j]<=n&&j<=ou[0]; ++j)
				{
					vis[i*ou[j]]=1;
					m[i*ou[j]]=m[i]*m[ou[j]]%mod;
					if (i%ou[j]==0)//ou[j]是i的最小因数时,特判gcd
						{
							g[i*ou[j]]=g[i];
							if ((k/g[i])%ou[j]==0)g[i*ou[j]]*=ou[j];
							break;
						}
					g[i*ou[j]]=g[i]*g[ou[j]];//ou[j]不是x因子时
				}
			ans=(ans+g[i]*m[i])%mod;
		}
	cout<<ans<<endl;
}

int32_t main()
{
	std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	mysolve();
	system("pause");
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值